26th NWAS 2012 Abstract Submission

* Deadline for abstracts is: April 13, 2012

* Submit abstracts by email to nwas.abstracts@gmail.com, with ABSTRACT in the subject line

* In your email, indicate the type of presentation:

 __ Oral presentation (15 minute) __
 __ Poster presentation (No wider than 45”) __

A PC-laptop computer and LCD projector will be available for presentations. Please bring your presentation on a flash drive or CD and be prepared to load your presentation onto the computer when you arrive at the symposium. If you used an Apple Macintosh computer/software to create your presentation, it is best to bring your own Apple laptop and **make sure you bring your own computer projector connector cable.**

* In your email, indicate if you require special equipment (overhead projector, 35 mm slide projector).

* Attach your abstract to the email. Your abstract should be saved as a *.doc Word file. Abstracts should be composed in 12 pt Times New Roman font, single-spaced, and limited to 250 words. Please follow the format shown below.

TITLE (In caps)

(space)

Author first name and last name. Affiliation. (Please underline the speaker’s name if more than one author.)

(space)

Abstract should be single spaced and limited to 250 words.

Example:

REPRODUCTIVE INVESTMENT STRATEGIES IN CORALLINE ALGAE

Kevin A. Miklasz. Hopkins Marine Station, Stanford University, Monterey, California.

Typical reproductive strategies, such as r s. K selection, are well described in animals, and to some degree plants. But in the relatively few algal studies that exist, the typical reproductive patterns described for animals have not been found. Often different measurement techniques of reproductive effort have made between-study comparisons difficult, if not impossible. Coralline algae, on the other hand, are an
excellent group of algae in which to investigate patterns of reproductive strategy. Coralline algae reproduce through well defined reproductive cavities called conceptacles. The conceptacles are of taxonomic importance, so their shape and size has been well described for many species. Additionally, the range of spore sizes in coralline algae spans the entire range of spore sizes found in red algae, so any investment strategy in algal offspring size should be apparent in coralline algae. I performed a meta-analysis of the reproductive features of coralline algae to look for typical reproductive strategies. I found that the r vs. K selection paradigm did not provide a good explanation for the patterns found in coralline algae. As an alternate explanation, I would like to suggest that algal spore size is unrelated to reproductive investment issues, rather it is entirely constrained by the physical factors that the spores may face in different habitats.