NINTH NORTHWEST ALGAL SYMPOSIUM

PROGRAM & ABSTRACTS

Walla Walla College Marine Station, Rosario Beach
Anacortes, Washington
March 31 - April 2, 1995
SCHEDULE
9TH NORTHWEST ALGAL SYMPOSIUM
WALLA WALLA COLLEGE MARINE STATION
ROSARIO BEACH, ANACORTES, WASHINGTON
March 31 - April 2, 1995

FRIDAY, MARCH 31, 1995 ---

1:00 Check-in, Register, Set-up posters

6:00 Dinner

7:00 Welcome, Orientation & Announcements

7:30 Evening speaker: "Biological Invasions in Estuaries" -
 Dr. Annette Olson, University of Washington

8:30 Poster session

SATURDAY, APRIL 1, 1995 --

7:30 Breakfast

8:30 SESSION I - ECOLOGY

8:30 Graham, Michael H. Effects of wave exposure and
 disturbance-mediated competition on the shallow limit of
 giant kelp.

8:45 Clark, R.P. Shading effects of multiple kelp canopies on
 understory algal assemblages.

9:00 Taghaoussi, M. & Wm. P. Lucey. Old-growth forest canopies:
 a poorly studied habitat for epiphytic and free-living algae.

9:15 Whitmer, Allison. The population genetic structure and
 evidence of self-fertilization in Peltvetia fastigiata
 (gracilis).

9:30 Stiller, J.W. & J.R. Waaland. Molecular analysis of an
 enigmatic salt marsh Porphyra.

10:00 Low Tide - Tidepooling & Collecting/Poster session

12:30 Lunch
SATURDAY, APRIL 1, 1995 (cont.)

1:30 SESSION II - MOLECULAR BIOLOGY & PHYLOGENY

1:30 Lindstrom, S.C. Molecular phylogeny of the Palmariaceae.

1:45 Liptack, Michael K. & L.D. Druehl. rDNA sequencing as an approach to understanding *Macrocystis-Pelagophycus* hybrids.

2:00 Tan, I.H. & L.D. Druehl. Molecular phylogeny among the kelp (Laminariales, Phaeophyceae) families.

2:15 Mayes, Charlene & Louis D. Druehl. Molecular evolution within the kelp family Laminariaceae.

2:45 Break

3:00 SESSION III - CYTOLOGY & PHYSIOLOGY

3:00 Oates, B.R. & K.M. Cole. Cytological studies of developing rhizoids and holdfasts in *Bangia vermicularis*.

3:30 Alessa, Lilian. The effect of aluminum on cytoplasmic streaming, growth & the cytoskeleton of *Vaucheria longicaulis*.

3:45 Engebretson, Hilary & Gisele Muller-Parker. The effects of light and temperature on translocation of carbon from two algal symbionts to their host, the intertidal sea anemone *Anthopleura elegantissima*.

4:00 Edwards, Matthew S. It's the little things: the role of microscopic stages in the recruitment of *Desmarestia ligulata* sporophytes.

4:30 Social, No-host bar @ Skyline Marina Clubhouse

6:00 Banquet @ Skyline Marina Clubhouse

7:30 Evening speaker: “Why Do Algae Live in Animal Cells?” - Dr. Gisele Muller-Parker, Western Washington University
SUNDAY, APRIL 2, 1995

7:30 Breakfast

8:45 SESSION IV - MICROALGAE

9:00 Ruesink, J. Effects of diatom epiphytes on Odonthalia floccosa: the importance of extent and timing.

9:30 Barraclough, C.L. & R.N. Nordin. Effects of impoundment on the diatom community of Sooke Reservoir, southern Vancouver Island, British Columbia.

10:15 Low Tide - Tidepooling & Collecting/Poster session

12:30 Lunch

1:30 Check-out, Take down posters
ABSTRACTS OF THE 9TH NORTHWEST ALGAL SYMPOSIUM

WALLA WALLA COLLEGE MARINE STATION

ROSARIO BEACH

ANACORTES, WASHINGTON

MARCH 31 - APRIL 2, 1995

THE ABSTRACTS FOR ALL THE PRESENTED PAPERS AND POSTERS HAVE BEEN PRINTED AS SUBMITTED, ALPHABETICALLY, BY THE AUTHOR'S LAST NAME.
The Effect of Aluminum on Cytoplasmic Streaming, Growth and the Cytoskeleton of *Vaucheria longicaulis*.

Plants growing on acid soils suffer from a number of factors including nutrient deficiency and drought intolerance, with aluminum toxicity considered one of the most important plant growth limiting factors. In this study the coenocytic, filamentous alga *Vaucheria longicaulis* was used as a model to observe the effects of aluminum on cytoplasmic streaming and the cytoskeleton using both chemical and antibody probes. Aluminum causes a dramatic change in the cytoplasmic streaming pattern of chloroplasts and mitochondria but not nuclei as well as affecting morphological changes in both the cytoplasm and the overall algal filament. Growth, however, still occurs at approximately 60% to 70% of normal rates. Both microfilaments and microtubules are present in *Vaucheria longicaulis* as long, linear strands which are oriented parallel to the long axis of the cell. Our experiments show that aluminum affects both the microfilament and microtubule arrays but in radically different ways. The depolymerization of actin proceeds steadily until the linear array is no longer present and highly condensed focal areas are observed. However, upon transfer to aluminum free media, a period of recovery eventually leads to re-establishment of a normal microfilament pattern. Cytoplasmic streaming of chloroplasts and mitochondria recovers once the actin network has reformed. The microtubule array does not dissipate but rather displays thinner bundles with slightly less continuity along their length. Microtubules also appear to recover by regaining greater continuity and bundle thickness. This study suggests that these systems may act both independently in function and interdependently in structure. It also offers the potential to develop the *Vaucheria* system as a model testing tool to assess chemicals, phytotoxins and drugs for cytoskeletal activity.

EFFECTS OF IMPOUNDMENT ON THE DIATOM COMMUNITY OF SOOKE RESERVOIR, SOUTHERN VANCOUVER ISLAND, BRITISH COLUMBIA

Barraclough, C.L. and R.N. Nordin. University of Victoria, Department of Biology, Box 1700, Victoria, British Columbia. V8W 2Y2

Following impoundment, reservoirs commonly undergo a rapid increase in planktonic primary productivity, known as "trophic upsurge," followed by a slower return to a more stable level of productivity ("trophic depression"). This upsurge is fueled by a pulse of nutrients, particularly phosphorus, derived from inundated soils and decomposing vegetation. As nutrients and other biologically important elements and substances return to steady-state, planktonic primary production stabilizes at a new equilibrium. The water level of Sooke Reservoir, which supplies drinking water to Greater Victoria on Southern Vancouver Island, British Columbia, will be raised in 1998. It is not known whether this will fuel a trophic upsurge and thus lead to taste and odour problems in the reservoir. The reservoir was created by damming the outflow of Sooke Lake in 1913 and was subsequently raised in 1972. Since historical phytoplankton data are unavailable, a paleolimnological study of sedimentary diatoms was undertaken to examine previous effects of reservoir construction on the phytoplankton community. A trophic upsurge is evident; however, it predates reservoir construction and is thought to be a result of natural phenomena.
SHADING EFFECTS OF MULTIPLE KELP CANOPHES ON UNDERSTORY ALGAL ASSEMBLAGES

Clark, R.P. Moss Landing Marine Laboratories, Phycology Lab
Moss Landing, California 95039 U.S.A.

Canopy forming kelps can regulate understory assemblages by shading out some algal species while providing refuge for others. To study these regulatory processes, kelp canopies were cleared in Stillwater Cove, California, an area dominated by a dense two-canopy kelp forest of Macrocystis pyrifera and Pterygophora californica. Results suggest that classifying understory algae into traditional functional groups does not help understand the ecology of this assemblage. It was necessary to classify fleshy red algae into several separate categories to explain common responses to increased irradiance. Plocamium cartilagineum and Laurencia subopposita were shade-tolerant, capable of surviving under a variety of canopy conditions. Other fleshy red algae significantly increased in cover when light levels increased. The removal of both M. pyrifera and P. californica canopies increased irradiance and stimulated dense recruitment of Desmarestia ligulata, which then decreased light levels below it, reducing red algal abundance and species diversity. D. ligulata also physically abraded branches of P. cartilagineum. Since P. cartilagineum branchlets can facilitate entanglement of plant fragments in coralline turf (an asexual reproductive method of P. cartilagineum), abrasion by D. ligulata may reduce asexual reproductive success of P. cartilagineum. Red algal diversity and spatial homogeneity were greater within areas of increased irradiance, and growth rates of several red algal species were greater within these areas. While kelp canopies can decrease red algal abundance and diversity, variability in canopy cover may also increase species diversity by creating microhabitats of varying light levels.

Crivens, Jessie, Western Washington University, Bellingham WA, 98225 USA
THE GREAT ESCAPE
THE EFFECT OF GRADUAL INCREASES IN TEMPERATURE ON DIVISION AND PHASE OF Zooxanthellae IN THE SEA ANEMONE Aiptasia Pallida

Zooxanthellae, single-celled algae commonly found in symbiosis with a variety of anemones and corals, have two morphological phases. The non-motile phase is most often found within the host and the motile state is commonly found in the water column. The effect of gradual temperature increases in the tropical anemone Aiptasia pallida (from 25°C to 32°C, raised 1°C every third day) revealed a shift from less than 1% motile zooxanthellae in the anemone tentacles to over 50% motile zooxanthellae at 32°C. Until host mortality at 32°C was reached, no algae were expelled from the host. The phase shift was not accompanied by a difference in algal division; the mitotic index was maintained at an average of 1.5% in the control anemones held at 25°C, and at an average of 2.01% in the experimental animals. Therefore, gradual increases in temperature elicit different responses from the algal symbiosis than do temperature shock treatments involving rapid short term changes. Zooxanthellae exhibit the ability to withstand greater temperature than the host and therefore the transition to the motile phase could be an algal response to adverse environmental conditions. Since gradual changes are more likely to be encountered in nature, this study raises questions about the validity of experiments where the response of symbiotic associations to sudden changes in temperature are used to infer environmental responses.
ECOLOGICAL RESTORATION OF URBAN CREEKS: USE OF PERiphyTON BIOASSAYS FOR MONITORING LONG TERM ALTERATIONS IN WATER QUALITY.

Department of Biology, University of Victoria, Box 1700, Victoria B.C., Canada.
V8W 2Y2

In the early 1990's the ecological restoration of urban aquatic and riparian habitat began to receive increased attention from both the scientific community, private sector industry, local, state and provincial governments. The restoration of streams and creeks is a complex process because they frequently flow through multiple jurisdictions and are the receiving environment for a variety of undesirable discharges. Since 1985, fourth year, University of Victoria Phycology students have characterized water quality trends in a local creek, Colwood Creek, using the algal component of the periphyton community. Artificial sampling substrata have been used, as an in-situ community level bioassay, to track alterations in the creek's aquatic health. The study has revealed significant changes in the patterns of distribution of the freshwater Rhodophyte Batrachospermum sp. Roth. The water quality information obtained has been successfully used to mitigate inappropriate upland development and, through bylaw and administrative changes, significantly reduce point and non-point source pollution. This collaborative program provides a useful case-study for modelling the efficacy of urban stream restoration projects.

IT'S THE LITTLE THINGS: THE ROLE OF MICROSCOPIC STAGES IN THE RECRUITMENT OF DESMARESTIA LIGULATA SPOROPHYTES.
Edwards, Matthew S. Moss Landing Marine Laboratories, Moss Landing, CA.

How do large brown algae with annual sporophytes persist in the same area from year to year? This study investigates the process by which Desmarestia ligulata persists during sporophyte absence and offers insight into the ecology of its microscopic life-history stages. Macroscopic sporophytes of D. ligulata recruit in the spring, reproduce in early winter, and then disappear. Field experiments showed that spring sporophyte recruitment was highest in areas where the canopy forming kelps Macrocystis pyrifera and Pterygophora californica were removed. Recruitment was lower in areas where previous year's sporophytes were removed prior to the onset of fertility. This, along with a spore settlement study, suggested that spore dispersal may be limited. Substrate sterilization experiments and holdfast tagging studies indicated microscopic life stages "over winter" during periods of sporophyte absence and are the sole source of spring recruitment. Fluorescent labeling of newly settled spores demonstrated that filamentous gametophytes are the over wintering life-history stage. Gametophyte growth rates in the laboratory were significantly higher in long day lengths and high irradiances. Gametophytes did not grow when cultured at 4 μE m⁻² s⁻¹ for extended periods (>60 days), but began growing when transferred to 25 μE m⁻² s⁻¹, suggesting they can remain dormant for long periods under heavy algal canopies and begin growing if the canopies are removed.
THE EFFECTS OF LIGHT AND TEMPERATURE ON TRANSLOCATION OF CARBON FROM TWO ALGAL SYMBIONTS TO THEIR HOST, THE INTERTIDAL SEA ANEMONE Anthopleura elegantissima.
Hilary Engebretson and Gisele Muller-Parker. Western Washington University, Department of Biology, Bellingham, Washington 98225 U.S.A.

The intertidal sea anemone Anthopleura elegantissima is symbiotic with two distinct species of algae. It has been suggested that light and/or temperature may play a role in the distribution of the two algal species within and among anemones. This research uses 14C-labelled bicarbonate to trace the translocation of photosynthetic products from algae to host in anemones held under several light and temperature regimes.

EFFECTS OF WAVE EXPOSURE AND DISTURBANCE-MEDIATED COMPETITION ON THE SHALLOW LIMIT OF GIANT KELP.
Graham, Michael H. Moss Landing Marine Laboratories, Moss Landing, CA.

What regulates the shallow water distribution of giant kelp, Macrocystis pyrifera? I studied the effect of wave exposure on variation of the shallow water distribution of M. pyrifera by frequently sampling the shallow limit at three sites along a wave exposure gradient. Within-site variability increased with increasing wave exposure. The shallow limit at the protected site varied little throughout the study, but was seasonally variable at the exposed site. The depth of the shallow limit increased with increasing wave exposure during fall and winter, but decreased with increasing wave exposure during spring and summer. Experiments indicate that this reversal is a result of disturbance to algal mats at exposed sites, providing more substrate for recruitment. Plants with surface canopies grew deeper than plants without such canopies, suggesting that removal of surface canopy increases survival in shallower water, probably by reducing drag. Experiments to assess mortality as a function of depth and morphology are in progress, and should provide additional insight about the mechanisms that allow giant kelp to survive in the surf zone. At present, it appears that differences in wave exposure cause between-site differences in the shallow limit of M. pyrifera during fall and winter, but that other factors are important during spring and summer.

PURIFICATION AND CHARACTERIZATION OF THE ENZYME PHOSPHORIBULOKINASE FROM THE MARINE ALGA, HETROSIGMA CARTARAE.
Tara Hariharan, Paula Johnson and Rose Ann Cattolico. University of Washington, Department of Botany, Seattle, Washington 98195 U.S.A.

Extensive work carried out in this laboratory has led to the finding that both the small and large subunits of the Calvin cycle enzyme Rubisco are coded in the chloroplast of the marine alga, Heterosigma. This enzyme differs in substrate utilization and inhibitor response from that of terrestrial plants. As a continuation of this work we are analyzing functional and genetic aspects of the enzyme phosphoribulokinase (PRK).

To date, hybridization analysis using probes from spinach, Chlamydomonas and Rhodopseudomonas sphaeroides have given negative results. We have now purified Heterosigma cartarae PRK enzyme approximately 250 fold. The amino terminal domain will be subject to micro sequencing. This data will allow the generation of an appropriate oligonucleotide that can be then used to identify the coding location of the PRK gene.

Kinetic analyses on the partially purified enzyme indicates that the enzyme is insensitive to NADH. Km values for ATP and substrate have been obtained. The Heterosigma PRK enzyme requires a divalent cation preferably Mg++ for efficient function. From our results, it does appear that the enzyme may be in a complex with other Calvin cycle enzymes.
TRANSCRIPTS ANALYSIS OF FSV

Yibing Jia, Russel Meints
Department of Botany and Plant Pathology
Oregon State University
Cordley Hall 2082
Corvallis OR 97331

FSV is a large icosahedral virus with a double stranded DNA genome (180 kb) that persistent infects marine filamentous brown alga *Feldmannia spp.* Four cosmid clones that cover the entire FSV genome were used as probes for Northern hybridization analysis to detect expression of viral genes. Six major FSV transcripts and at least 10 minor transcripts were identified in sporophytes.

Chlamydomonas reinhardtii phototaxes toward light by means of a light-sensitive organelle, the eyespot. This organelle is made up of signal transduction components in the plasma membrane of the cell and reflective carotenoid pigment layers in an underlying region of the chloroplast. To identify components important for the positioning and assembly of a functional eyespot, a large collection of mutants that fail to phototax was screened to identify those with aberrant eyespots. Four loci were identified and mapped. *ey-1* and *ey-2* mutants have no pigmented eyespots. *mlt-1* mutants have multiple eyespots. *min-1* mutants have smaller than wild-type eyespots. The *min-1*, *mlt-1*, and *ey-2* loci are closely linked on linkage group XV and the *ey-1* locus was mapped previously to linkage group X. The *ey-1* and *ey-2* mutants are epistatic to *min-1* and *mlt-1* mutations; all double mutants are eyeless. A combination of a *min-1* and *mlt-1* mutation in the same strain results in a synthetic phenotype different from either single mutant; the double mutants are eyeless or have very small and misplaced eyespots. Ultrastructural studies reveal that the *min-1* mutants are defective in the physical connection between the plasma membrane and the chloroplast envelope membranes in the region of the pigment granules. A new collection of mutants is being generated by insertional mutagenesis to determine the sequence of the genes involved in eyespot assembly.
CHARACTERIZATION AND MAPPING OF THE REPETITIVE ELEMENTS IN THE
DS-DNA GENOME OF A BROWN ALGAL VIRUS (FSV)

Pathology, Oregon State University, Corvallis, OR 97331-2902 USA.

We will describe the repetitive sequences found in the two size classes of the genome of
Feldmanna sp. Virus (FsV). The repetitive sequences were first identified based on the cross-
hybridization among five fragments, B1b (band #1b), B6, B14a, B18, and B19 of BamHI-digested
FsV DNA. Sequence analysis of the B18 fragment revealed the presence of 173 bp direct
repeats. Restriction maps of the cross-hybridizing BamHI-fragments in the two size classes of
the FsV genome show that the repeats occupy one localized region of the virus genome. We
estimate the number of 173 bp repeats in the 182 kbp genome to be about 115 and in the 165
kbp genome to be about 62. In the 182 kbp genome, the repeats are dispersed over a 22 kbp
region, which is about 12% of the virus genome, and in the 165 kbp genome the repeats are
dispersed over a 10 kbp region, which is about 6% of the genome. The difference in the number
of repeats can account for 50% of the size difference between the two size classes of the FsV
genome.

MOLECULAR PHYLOGENY OF THE PALMARIACEAE. Lindstrom, S. C.
University of Groningen, Marine Biology Department, 9750 AA Haren, The
Netherlands, and University of British Columbia, Department of Botany,
Vancouver, BC, Canada V6T 1Z4

The ITS1 and ITS2 regions of the nuclear ribosomal repeat unit were
sequenced in ten species of the red algal family Palmariaceae and in Rhodophysema
georgii (the type species of the family most closely related to the Palmariaceae).
The sequences in all species of Palmariaceae were completely alignable. Among
these species, 203 out of 854 sites were variable, and 87 of these sites were
potentially phylogenetically informative. The sequences in Rhodophysema georgii
were alignable over most of the ITS2 but over only somewhat more than half of the
ITS1 region. A parsimony analysis of the data rooting it with R. georgii suggests
the recognition within the Palmariaceae of four clades that radiated at about the
same time. A more recent radiation appears to be occurring in one of these clades
based on relatively few base pair changes among the species.

rDNA SEQUENCING AS AN APPROACH TO UNDERSTANDING
MACROCYSTIS-PELAGOPHYCUS HYBRIDS.

Michael K. Liptack and Louis D. Druehl. Bamfield Marine Station, Bamfield B.C.
Canada V0R 1B0.

DNA sequencing of the ITS1 region of the ribosomal cistron (rDNA) was
performed on male and female gametophytes from Macrocystis pyrifera, Pelagophycus
porra, and a putative Macrocystis-Pelagophycus hybrid. Multiple sequencing runs were
performed in both directions from a fragment encompassing parts of both the 18S and 5.8S
subunits and the ITS1. Resulting sequences were hand aligned prior to phylogeny
generation using PHYLIP 3.5c. Bootstrapped Neighbor Joining and Parsimony trees were
generated. The hybrid was found to be more closely related to M. pyrifera than to P.
porra. Implications will be discussed.
GROWTH OF THE MACROALGA Ulva expansa FROM PADILLA BAY, WASHINGTON IN RESPONSE TO NUTRIENT ENRICHMENT
MacDonald, Brian. Western Washington University, Bellingham, Washington.

Nutrient enrichment experiments were conducted to determine the growth rate, morphological, and biochemical responses of Ulva expansa to ammonium and phosphate. Algae collected from Padilla Bay, Washington in July 1994 were cultured for twelve days at an average light intensity of 309 μmol/m²/s in continuous-flow chambers under laboratory conditions. Ammonium-phosphate additions (in μM) of 0:0, 10:1, 20:2, 50:5, and 150:15 were supplied to the algae. Growth of the algae exposed to the lower four nutrient treatments was not significantly different among the treatments (average of 230% increase in area over 12 days). Growth of the algae in the 150:15 treatment, however, was significantly higher (average of 1,500% increase in area over 12 days) than under the other four treatments. No significant difference in chlorophyll concentration was found for Ulva cultured at the four lowest nutrient treatments (average chl a = 1.4 μg/cm², average chl b = 0.9 μg/cm²). Chlorophyll content of the algae in the 150:15 treatment was significantly higher (average chl a = 2.8 μg/cm², average chl b = 1.4 μg/cm²) than the content of the algae in the other treatments. The carbon:nitrogen (C:N) ratio of the algae decreased with nutrient enrichment from 36:1 in the 0:0 treatment, to 12:1 in the algae grown in the 150:15 treatment. Dry weight of Ulva expansa decreased as the ammonium and phosphate levels increased, from an average of 1.6 mg/cm² for the 0:0 treatment to an average of 0.79 mg/cm² for the 150:15 treatment. From this work it is apparent that large increases in the ammonium and phosphate levels in Padilla Bay are likely to result in increases in growth and changes in the biochemical composition of the macroalgae Ulva expansa.

MOLECULAR EVOLUTION WITHIN THE KELP FAMILY LAMINARIACEAE (Laminariales, Phaeophyta)

Charlene Mayes and Louis D. Druehl,
Simon Fraser University, Burnaby, B.C. V5A 1S6
and Bamfield Marine Station, Bamfield, B.C. V0R 1B0

Phylogenetic relationships among the genera of an advanced kelp family, the Laminariaceae, were inferred from rDNA sequence data. Approximately 600 nucleotides, spanning the 3' region of the 18S gene, the Internal Transcribed Spacer 1 and the 5.8S gene of the nuclear encoded ribosomal cistron, were determined for representative species from 10 genera of this family. Molecular inferred relationships will be compared to the traditional taxonomy and current geographic distributions of these algae.
McQuoid, M. R. and L. A. Hobson. University of Victoria, Department of Biology, PO Box 1700, Victoria, B.C. CANADA V8W 2Y2

To understand interannual changes in biological communities it is important to have a long-term record of the regular variability of the community. Long-term data sets are time consuming and sometimes costly to collect, and in some cases changes in techniques make it difficult to compare old data with new information. Laminated sediments provide a quick way to identify changes and cycles in diatom populations at an annual and seasonal level. Diatom frustules were prepared and enumerated from two frozen cores of Saanich Inlet sediments. Several species and genera show a regular seasonal pattern of abundance and some species exhibit shifts or cycles. *Thalassiosira* and several *Chaetoceros* species have peak abundances in the lower portion of the light layer indicating deposition in the early spring. *Skeletonema costatum* regularly shows peaks in the upper portion of the light layer indicating deposition in the late spring and early summer. *Rhizosolenia* spines are found mainly in the dark layers deposited in fall and winter. Interannual differences are also observed for some species. These seasonal data may provide useful indications of past changes in environmental conditions such as temperature and salinity of surface waters or even climatic events such as El Niño Southern Oscillation.

A COMPARISON OF AMMONIUM UPTAKE RATES AND CHLOROPHYLL CONTENT OF Ulva sp. FROM TWO INTERTIDAL LEVELS AT SHANNON POINT MARINE CENTER, ANACORTES, WA
Morello, T. A. Western Washington University, Biology Department, Bellingham, Washington 98225 U.S.A.

Algae that live at high intertidal levels may be nutrient limited relative to low intertidal algae, due to a shorter period of submergence in water. Ammonium uptake rates and chlorophyll concentration of *Ulva* sp. from two intertidal levels (-0.30 m below MLLW and 1.06 m above MLLW) at Shannon Point, Anacortes, Washington, were studied in October 1994. Ammonium uptake rate was saturated at all concentrations tested (20-100 uM NH₄⁺) for both algal populations, and averaged 1.76 uM NH₄⁺/g/hr for the algae from the high intertidal level and 6.79 uM NH₄⁺/g/hr for the algae from the low intertidal level. There was no significant difference in these two uptake rates; tidal height did not affect NH₄⁺ uptake of *Ulva*. Either the algae were already fully saturated by the nitrogen supply, were experiencing little or no growth, or the lowest initial ammonium concentration (20 uM) was at or above the saturation uptake rate for *Ulva* sp. The chlorophyll concentrations were 120.8 ug chl a/g alga and 73.9 ug chl b/g alga for the high intertidal algal population, and 190.2 ug chl a/g alga and 119.1 ug chl b/g alga for the *Ulva* from the lower intertidal height, and the concentrations between the two algal populations were significantly different. Although *Ulva* from the lower intertidal level contained more chlorophyll a and b, there was no significant difference in the chlorophyll a:b ratios (both were 1.63). In this study, it appears that tidal height does not affect the ammonium uptake rate of *Ulva* sp., but that it may have an influence on the amount of chlorophyll this alga contains.
CYTOLOGICAL STUDIES OF DEVELOPING RHIZOIDS AND HOLDFASTS IN BANGIA VERMICULARIS.

Oates, B. R. and K. M. Cole. Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

Despite the importance and ubiquitous occurrence of unicellular and multicellular rhizoids in the algae, very little is known about these specialized cells, that function primarily in attachment and also may be involved in nutrient absorption. In the Rhodophyta, reports on ultrastructure and function of rhizoids are limited to 2 host-penetrating species: Polysiphonia lanosa and Harveyella mirabilis. To date, there are have been no studies on rhizoids that attach to inorganic substrata. Our investigations have followed rhizoid development from the germinating spore to the mature thallus. We have concentrated on details of the differentiation process commencing with the primary rhizoid cell that is determined prior to the first division of the spore, and cellular activities associated with the attachment function. A number of cytological changes have been observed in the differentiating rhizoids of Bangia. They include changing positions of the chloroplast and nucleus, build up of ER and ER vesicles, production and distribution of starch and development of secondary rhizoids and the holdfast. Cytoskeletal inhibitors have been used to determine the role of these cytological structures in germination, development of cell polarity and cell division.

ABUNDANT CHROMOPHYTE PLASTID 16S RIBOSOMAL RNA GENES FOUND IN A CLONE LIBRARY FROM ATLANTIC OCEAN SEAWATER

Michael S. Rappe\(^2\), Paul F. Kemp\(^2\) and Stephen J. Giovannoni\(^3,1\), \(^1\)Dept. of Microbiology, Oregon State University, Corvallis OR 97331; \(^2\)Oceanographic and Atmospheric Sciences Div., Brookhaven National Laboratory, Upton NY 11973

In recent years, ribosomal RNA genes cloned from natural picoplankton communities have been used to identify previously unknown marine bacterioplankton. There are similar uncertainties regarding the identities of small eukaryotic phytoplankton which, like bacterioplankton, can be difficult to cultivate and can have few defining morphological characteristics. In this study, Bacterial-specific 16S rDNA primers were used to PCR amplify genes from picoplankton collected on 0.2 μm filters by filtration, from a depth of ten meters in the pelagic region over the continental shelf off Cape Hatteras, North Carolina. Nucleic acid sequencing and probe hybridization revealed that chromophyte plastid genes comprise 25% of the cloned 16S rRNA genes in a library of 170 clones. The clones belonged to two groups within the Chromophyta: the Prymnesiophyceae and the Bacillariophyceae. In previous applications of similar methods to plankton samples collected in the Sargasso Sea, no plastid clones were detected. These results provide evidence that abundant, previously uncharacterized Chromophyce plastid 16S rRNA genes are present in the water over the continental shelf off Cape Hatteras. The results also suggest that plastid 16S rRNA genes may provide suitable genetic markers for studying phytoplankton biodiversity and biogeography.
EFFECTS OF LIGHT INTENSITY AND PLANT ORIENTATION ON PIGMENT
CONCENTRATIONS OF BOSSIELLA CALIFORNICA ssp. SCHMITTI.

Insitu effects of light intensity on pigment concentration are critical to understanding how natural
conditions affect photosynthetic pigments. Bossiella californica ssp. schmitti (Manza) Jolans. has a
unique dorsi-ventral orientation that allows for manipulations of plant orientation as well as light levels.
Natural collections were used to investigate changes in phycoerythin between plant surface with depth.
Plants were collected at shallow (18m) and deep (27m) depths for phycoerythin analysis of the dorsal and
ventral surfaces. The surfaces varied significantly in phycoerythin fluorescence at both depths, but there
were no significant differences between pigments of the same surface with depth. To investigate the
hypothesis that pigment (chlorophyll a and phycoerythin) levels change over time (5 and 10 weeks) and
at different light intensities, shaded (0.4% I_D) and unshaded (4.0% I_D) blocks with both surfaces of the
plant exposed were placed at 16m. Plant surfaces under shaded conditions significantly increased both
pigments after ten weeks. This study provides evidence that for B. californica ssp. schmitti, pigments do
increase with decreasing irradiance over a period of ten weeks, and that plant orientation appears to effect
patterns of pigment distribution on the plant.

Cultured Lyngbya Majuscula as a Source for the Antimitotic Drug Curacin A

Roberts, M.A., J.V. Rossi, and W.H. Gerwick Oregon State University, College of
Pharmacy, Corvallis, Oregon 97331 USA
Sources for new pharmaceuticals are being sought because of the need to
replace drugs in current use that have become ineffective and to find new
drugs that work in novel ways. Although some terrestrial sources are still to be
explored, the marine environment is a rich and underdeveloped source of
novel pharmaceuticals. The remarkable variety of plants and animals in the
oceans and their interactions suggests many new possible avenues of
pharmaceutical drug discovery. We are pursuing this line of investigation by
sampling and analyzing marine macro and micro algae from around the world
for their potentially novel natural products. The Cyanophyta are one group of
algae which have proven to be an abundant source of new biomedicinals. In
particular, a field collected and cultured Lyngbya majuscula, from Curaçao has
yielded a new antimitotic, brine shrimp toxic, and antiproliferative compound
named curacin A. Ongoing culture studies are focusing on the parameters
necessary for increased production and on the biosynthetic pathway of this
novel compound.

EFFECTS OF DIATOM EPiphytes ON Odonthalia floccosa: THE IMPORTANCE OF EXTENT AND
TIMING.
Ruesink, J. University of Washington, Department of Zoology, Seattle, Washington, 98195-1800 USA

Epiphytes clearly contribute to the overall productivity of coastal marine and estuarine systems. However,
controversy lingers over whether they cause the productivity of their hosts to decline. Some studies have shown
reductions in host photosynthesis due to shading or interference with nutrient absorption, while others
demonstrate no effects on hosts under most natural light conditions. I addressed the consequences of
epiphytism for Odonthalia floccosa, a branched red intertidal alga frequently colonized by the diatom Isthmia
nervosa. Based on measurements of O2-evolution in bottles, diatoms did not affect host photosynthesis until
comprising at least 25% of dry weight. Furthermore, even heavy diatom cover was inconsequential for
Odonthalia demography as long as epiphytes appeared late in the summer, after completion of host growth and
reproduction.

Why is the wide-bladed *M. splendens* never found at high wave exposure sites of the narrow-bladed *M. linearis*? The present study addresses the hypothesis that drag and acceleration forces are high enough to prevent *M. splendens* thalli from becoming established at a high wave exposure site. Surface areas of long (i.e. 15.0 - 25.0 cm) *M. splendens* are significantly greater than those of *M. linearis* and blade widths of short (i.e. < 5.0 cm) *M. splendens* are significantly wider than those of *M. linearis*. This means that at a given water velocity drag and acceleration will always be greater for *M. splendens*. For long thalli, the force required to break the stipe from the holdfast does not differ significantly between the two species. When the total hydrodynamic force (i.e. drag + acc.) for each species is considered against the force required to break thalli, percent survivorship of long thalli of *M. splendens* should be 0.0% at high water velocities but short thalli of *M. splendens* should persist. The latter prediction contradicts the fact that natural stands of *M. linearis* lack even short thalli of *M. splendens*. Survivorship predictions from this model have been verified by transplanting *M. splendens* to a high wave exposure site of *M. linearis*. Thus, the present hypothesis must be rejected and another hypothesis, such as attachment failure by spores of *M. splendens*, may be the reason it never gets established.

MOLECULAR ANALYSIS OF AN ENIGMATIC SALT MARSH PORPHYRA

For years a putative *Porphyra* ecotype of unknown taxonomic affiliation has been observed growing in salt marshes along the coast of the Pacific Northwest. Specimens of this so-called "ecad" usually were found drifting in the high intertidal or snagged on *Salicornia* (pickleweed), but no reproductive structures had been reported. It therefore remained unclear whether this entity was conspecific throughout its range and whether it represented a distinct taxon or an aberrant form of an open water species which drifted into the brackish marshes. Here we report the first observations of attached, reproductive blades and results from molecular analysis which indicate that, despite morphological differences, the reproductive and drift populations are conspecific and represent a widespread and hitherto undescribed species.
OLD-GROWTH FOREST CANOPIES: A POORLY STUDIED HABITAT FOR EPiphytic AND FREE-LIVING ALGAE.

Taghaoussi, M. and Wm.P. Lucey. Department of Biology, University of Victoria, P.O. Box 1700, Victoria, B.C. V8P 2Y2.

Recent studies of northern temperate old-growth rainforest canopies have revealed an extensive, previously undescribed, arboreal arthropod community. The habitat forms a refugium for a wide variety of arthropod species, including numerous, previously undescribed, species. The habitat also supports a number of immobilized algae, including lichens. An examination of the literature reveals that few, if any, free-living algae have been described from this old-growth canopy habitat. The objective of this study is to sample a number of microhabitats within the old-growth canopy in the Carmanah Valley on Vancouver Island, and to ascertain whether or not there exists an algal flora. The presence of epiphytic algae could also provide the host with an important source of supplemental nutrients. Preliminary arthropod and botanical studies of this northern temperate forest habitat indicates that loss of the trees through harvesting could result in the destruction and possible extinction of species presently unknown to science.

MOLECULAR PHYLOGENY AMONG THE KELP (LAMINARIALES, PHAEOPHYCEAE) FAMILIES.
Tan, I.H. and L.D. Druelh. Dept of Biol. Sc., Simon Fraser Univ., Burnaby, B.C., Canada V5A 1S6 and 1Bamfield Marine Station, Bamfield, B.C., Canada V0R 1B0.

Complete 18S rDNA sequences were determined for two primitive kelp: Chorda tomentosa (Chordaceae) and Saccorhiza polyschides (Phyllariaceae). Comparisons of these two sequences, nine published advanced-kelp sequences and ten non-kelp sequences provided insights into kelp ancestry and phylogeny. The rRNA tree, inferred by distance matrix method, suggested that the order Laminariales is polyphyletic. Chorda and Saccorhiza formed an assemblage with the Sporochonales, separated from the Alariaceae, Laminariaceae and Lessoniaceae clade. Our results suggested that the Laminariales, Sporochonales and Desmarestiales are closely associated, albeit not fully resolved.
The Population Genetic Structure and Evidence of Self-Fertilization in P. fastigiata (gracilis).
Allison Whitmer. University of Washington, Department of Botany, Seattle, WA, 98195.

P. fastigiata (gracilis) is an intertidal fucoid alga common in the California Channel Islands. Characteristics of the species as well as hypotheses based on current theories of dispersal and resulting genetic structure of populations in terrestrial plants predict genetic structuring of P. fastigiata populations over small spatial scales or clinal genetic variation over short distances. This study was designed to test the hypothesis that genetic structuring of P. fastigiata (gracilis) populations occurs on a scale of less than 30m. 75 individuals were sampled at four sites on Santa Catalina Island, CA. Allozyme electrophoresis was used to estimate allele frequencies and calculate conformance to Hardy-Weinberg equilibrium (HWE). Three of the four resolvable enzymes were monomorphic at all sites. The malate dehydrogenase enzyme system was polymorphic at one site with significant deviation from HWE and an excess of heterozygotes. Wright's FST equaled .231 and was used to estimate Nm at 0.83. Additionally, preliminary experiments on inbreeding depression indicate that self-fertilization may be an important method of reproduction for this alga. These results indicate that short-range dispersal and selfing may have pronounced effects on the genetic structure of P. fastigiata (gracilis).

PROGRESS WITH THE UBC HERBARIUM DATABASE.

TOM WIDDOWSON, UNIVERSITY OF VICTORIA, VICTORIA, BRITISH COLUMBIA V8Z 3G7, CANADA

I have transferred this database from KnowledgeMan to Microsoft Access in order to embed distribution maps and coloured illustrations of the common species. Information can be retrieved by species, locality or ecology.
Immobilization and Long-Term Storage of the Nitrogen-Fixing Cyanobacterium *Anabaena* PCC 7120 on an Inorganic Biosupport

Charles R. Williams\(^1\) and G.A. Codd\(^2\)

\(^1\)Department of Botany, KB-15, University of Washington, Seattle, WA, 98195
\(^2\)Department of Biological Sciences, University of Dundee, Dundee, DD14HN, Scotland, U.K.

Abstract

Microspheres composed of interconnecting needles of kaolinite proved suitable for immobilization by natural adherence of the cyanobacteria *Anacystis nidulans* PCC 1402-1 and *Anabaena* PCC 7120. Growth appeared normal and in some instances was greater for immobilized cultures. *Anabaena* grown under nitrogen-free conditions demonstrated significantly greater immobilization than nitrate-grown cells possibly due to increased extracellular polysaccharide levels. Further increases in immobilized biomass were achieved by sonicating *Anabaena* to reduce filament size.

Anabaena was exposed to different storage conditions to assess the potential of cell immobilization as a method for delivery of nitrogen-fixing cyanobacterial biofertilizers. Immobilization promoted increased recovery over free-living cells as measured by chlorophyll a content, colony growth, acetylene reduction, and oxygen evolution. Cells cryopreserved or air-dried with subsequent cold storage demonstrated high recovery but lyophilization proved ineffective. Recovery was found to be inversely related to storage temperature and a large reduction in activity over the first 7 days of storage indicated that initial cell damage during the cooling and desiccation of samples was likely responsible for much of the loss in recovery. Reconstitution may also have played a large part in damaging cells.

CULTIVATION OF *Acrosiphonia coelita* TISSUE CULTURE IN A 3 L STIRRED-TANK BIOREACTOR. Zhi, C., Ramanan, S., and Rorrer, G. L., Oregon State University, Department of Chemical Engineering, Corvallis, Oregon 97331 U.S.A. Semi-differentiated tissue cultures derived from green macroalga *Acrosiphonia coelita* were cultivated in PES medium within an illuminated 3 L stirred-tank bioreactor at 12 °C and 12,000 lux incident light intensity using CO\(_2\) in air as the sole carbon source for growth. Photolithotrophic cultivation of this culture resulted in a maximum cell density of 1,200 mg DCW/L and a specific growth rate of 0.14 day\(^{-1}\) within a 20 day cultivation period. In comparison, flask cultures only attained 500 to 600 mg DCW/L at similar conditions.
LIST OF REGISTRANTS FOR
NINTH NWAS CONFERENCE
APRIL 1995

Cori Barraclough
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-721-7124
cbarr@uvvm.uvic.ca

Sung Min Boo
Bamfield Marine Station
Bamfield, BC V0R 1B0
CANADA
phone: 604-728-3301

Carol Ann Borden
Department of Botany
University of British Columbia
#3529-6270 University Blvd.
Vancouver, BC V6T 1Z4
CANADA
phone: 604-822-5508

Natasha Calvin
Marine Botanicals
Box 2966
Sitka, AK 99835
phone: 907-747-8950
TSNIC@acadia.alaska.edu

Ross P. Clark
Moss Landing Marine Labs
Box 450
Moss Landing, CA 95039
phone: 408-633-6035
clark@mlml.calstate.edu

Jessie Cravens
11007 228 Street NE
Arlington, WA 98223
phone: 206-435-9627
NTIJQ71A@prodigy.com

Mike Crayton
Biology Department
Pacific Lutheran University
South 121st and South Park Avenue
Tacoma, WA 98447-0003
phone: 206-535-7547
craytoma@plu.edu

Veronik de la Cheneliere
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-480-1734

Susan C. Dixon
Department of Biological Sciences
Walla Walla College
204 South College Avenue
College Place, WA 99324
phone: 509-527-2603
dixosu@wwc.edu

Louis Druehl
Bamfield Marine Station
Bamfield, BC V0R 1B0
CANADA
phone: 604-728-3301
druehl@sfu.ca

Ryan Drum
Dominion Herbal College
Waldron Island, WA 98297
phone: 360-739-4035
Ellie Duffield
Botany Department KB-15
University of Washington
Seattle, WA 98195
phone: 206-685-1164
ecsd@u.washington.edu

Matthew Edwards
Moss Landing Marine Labs
P.O. Box 558
Moss Landing, CA 95039
phone: 408-633-1022
edwards@mlml.calstate.edu

Robert Ellis
Marine Botanicals
Box 2966
Sitka, AK 99835
phone: 907-747-8950
TSNIC@acadi.alaska.edu

Hilary Engebretson
Department of Biology
Western Washington University
Bellingham, WA 98225-9060

Rob Fitch
Biology Department
Wenatchee Valley College
1300 Fifth Street
Wenatchee, WA 98801
phone: 509-662-1651
rfitch@ctc.edu

Gretchen Frankenstein
(Western Washington University)
2001 Larrabee #9
Bellingham, WA 98225
phone: 360-738-3045
n9241848@henson.cc.wwu.edu

Michael Graham
Moss Landing Marine Labs
P.O. Box 462
Moss Landing, CA 95039
phone: 408-633-3217
graham@mlml.calstate.edu

Neeraj Grewal
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-472-0681

Gayle I. Hansen
Hatfield Marine Science Center/OSU
2030 South Marine Science Drive
Newport, OR 97365
phone: 503-867-0200
hanseng@ccmail.orst.edu

Tara Hariharan
Department of Botany, KB-15
University of Washington
Seattle, WA 98195
phone: 206-543-1627
tara@carson.u.washington.edu

Michael Hawkes
Department of Botany
University of British Columbia
#3529-6270 University Blvd.
Vancouver, BC V6T 1Z4
CANADA
phone: 604-822-5430
mhawkes@unixg.ubc.ca

Christine Hayden
Department of Chemical Engineering
Oregon State University
Gleeson Hall
Corvallis, OR 97331
phone: 503-737-3622
haydencm@cstr.che.orst.edu

Hillary Hayden
615 14th Avenue East, #304
Seattle, WA 98112
work phone: 206-621-0094
home phone: 206-720-0303
76053.464@compuserve.com
Eric Henry
Department of Botany and Plant Pathology
Cordley Hall 2082
Oregon State University
Corvallis, OR 97331-2902
phone: 503-737-3897
henrye@bbc.orst.edu

Mary Rose Lamb
Department of Biology
University of Puget Sound
Tacoma, WA 98416
phone: 206-756-3301
mrlamb@ups.edu

Bruce Jeffs
Department of Biology
University of Victoria
P.O. Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-721-7122

Amy M. Lee
Department of Botany and Plant Pathology
Oregon State University
Corvallis, OR 97331-2902
phone: 503-737-3897
shona@bbc.orst.edu

Yibing Jia
Department of Botany and Plant Pathology
Cordley Hall 2082
Oregon State University
Corvallis, OR 97331-2902
phone: 503-737-3897
jiay@bbc.orst.edu

Chantal Levesque
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA

Sandra Lindstrom
Department of Botany
University of British Columbia
3529-6270 University Blvd.
Vancouver, BC V6T 1Z4
CANADA
phone: 604-822-3349 or 594-9734
sandracl@unixg.ubc.ca

Terrie Klinger
Friday Harbor Labs
620 University Road
Friday Harbor, WA
phone: 206-363-3690
tklinger@fhl.washington.edu

Ed Lippert
Department of Biology
Portland State University
Portland, OR 97207
phone: 503-725-4703 or 1-800-547-8887

Paul Kugrens
Department of Biology
Colorado State University
Fort Collins, CO 80523
phone: 303-491-7551
pkugrens@lamar.colostate.edu

Mike Liptack
Bamfield Marine Station
Bamfield, BC V0R 1B0
CANADA
phone: 604-728-3301

Handojo Kusumo
Bamfield Marine Station
Bamfield, BC V0R 1B0
CANADA
phone: 604-728-3301
Patrick Lucey
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA

Brian MacDonald
(Western Washington University)
601 North Forest
Bellingham, WA
phone: 360-676-0054
n9140762@henson.cc.wwu.edu

Colleen MacDonald
(Western Washington University)
601 North Forest
Bellingham, WA
phone: 360-676-0054
n9140762@henson.cc.wwu.edu

Ian KFB Mackenzie
Bamfield Marine Station
Simon Fraser University
Burnaby, BC V5A 3W1
phone: 604-291-3981
imackenz@sfu.ca

Charlene Mayes
Department of Biological Sciences
Simon Fraser University
Burnaby, BC V5A 1S6
CANADA
phone: 604-291-3981
mayes@sfu.ca

Melissa McQuoid
Department of Biology
University of Victoria
P.O. Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-721-7124
mcquoid@uvvm.uvic.ca

Russ Meints
Center for Gene Research and
Biotechnology
Oregon State University
3021 Agricultural & Life Sciences Bldg.
Corvallis, OR 97331-7303
phone: 503-737-3347
meinstr@bcc.orst.edu

John Milne
(University of Puget Sound)
1230 North G Street
Tacoma, WA 98403
phone: 206-593-
jmilne@ups.edu

Grant G. Mitman
Biology Department
Montana Tech
1300 West Park Street
Butte, MT 59701
phone: 406-496-4617
fax: 406-496-4133
gmitman@mtvms2.mtech.edu

June Mohler
Oregon Department of Fish and Wildlife
2040 SE Marine Science Drive
Newport, OR 97365
phone: 503-867-4741
mohlerj@ccmail.orst.edu

Aaron Morello
(Western Washington University)
P.O. Box 4331
Nooksack, WA 98276
n9140043@henson.cc.wwu.edu
Gisele Muller-Parker
Biology Department
Western Washington University
Bellingham, WA 98225-9060
phone: 360-650-4885
and
Shannon Point Marine Center
Western Washington University
Anacortes, WA 98221
phone: 360-293-2188
gisele@henson.cc.wwu.edu

Chris Parks
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA
cparks@uvic.ca

Jamie Platt
Department of Botany and Plant Pathology
Cordley 2082
Oregon State University
Corvallis, OR 97331-2902
phone: 503-737-3897
plattj@bbc.orst.edu

Tom Mumford
Washington Department of Natural Resources
P.O. Box 47027
Olympia, WA 98504-7027
phone: 360-902-1079
tmkk490@wadnr.gov

Sundareshan (Sun) Ramanan
Department of Chemical Engineering
Gleeson Hall
Oregon State University
Corvallis, OR 97331
phone: 503-737-3622
ramanans@cstr.che.orst.edu

Ann Murkowski
Department of Biology
Western Washington University
Bellingham, WA 98225-9060
n9419573@henson.cc.wwu.edu

Navin Rao
(University of Puget Sound)
1415 North Washington
Tacoma, WA 98406
phone: 206-756-2471
nrao@ups.edu

Brian Oates
Department of Botany
University of British Columbia
Vancouver, BC V6T 1Z4
CANADA
phone: 604-822-3349

Mike Rappe'
Department of Microbiology
Oregon State University
Corvallis, OR 97331
phone: 503-737-3334
rappem@bcc.orst.edu

Annette Olson
School of Marine Affairs, HF-05
3707 Brooklyn Avenue, NE
University of Washington
Seattle, WA 98195
phone: 206-685-2499
olsonam@u.washington.edu

Bob Redden
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA
phone: 604-744-3371
Cassandra Roberts
Moss Landing Marine Labs
P.O. Box 567
Moss Landing, CA 95039
phone: 408-633-1843
roberts@mlml.calstate.edu

Jessica Roberts
Bamfield Marine Station
Bamfield, BC V0R 1B0
CANADA
phone: 604-728-3301

Mary Ann Roberts
College of Pharmacy
Oregon State University
Corvallis, OR 97331
phone: 503-737-5806
robertma@ccmail.orst.edu

Gregory (Greg) L. Rorrer
Department of Chemical Engineering
103 Gleeson Hall
Oregon State University
Corvallis, OR 97331
phone: 503-737-3370
rorrerg@ccmail.orst.edu

Jennifer Ruesink
Department of Zoology
Box 351800
University of Washington
Seattle, WA 98195-1800
phone: 206-685-8615
ruesinkj@zoology.washington.edu

Frank Shaughnessy
Department of Botany
University of British Columbia
6270 University Blvd.
Vancouver, BC V6T 1Z4
CANADA
phone: 604-822-6785
sfrank@unixg.ubc.ca

John Stiller
Department of Botany, KB-15
University of Washington
Seattle, WA 98195
phone: 206-543-1973
stiller@u.washington.edu

Christopher Sundberg
Department of Botany and Plant Pathology
Cordley 2082
Oregon State University
Corvallis, OR 97331-2902
phone: 503-737-3897
schaka@bbc.orst.edu

Marc Taghaoussi
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA

Ian H. Tan
Department of Biological Sciences
Simon Fraser University
Burnaby, BC V5A 1S6
CANADA
phone: 604-291-3981
itan@sfu.ca

Laura F. Veary
Department of Biology
University of Victoria
Box 1700
Victoria, BC V8W 2Y2
CANADA

Henry Verschoof
Simon Fraser University
Burnaby, BC V5A 1S6
CANADA
phone: 604-291-3981
verschoo@sfu.ca
Bob Waaland
Department of Botany
University of Washington
Seattle, WA 98195
phone: 206-543-7098
jrw@u.washington.edu

Susan Waaland
Biology Program
University of Washington
Seattle, WA 98195
phone: 206-685-8040
sdw@u.washington.edu

Ali Whitmer
Department of Botany, KB-15
University of Washington
Seattle, WA 98195
phone: 206-685-8002
awhitmer@u.washington.edu

Tom Widdowson
University of Victoria
4635 West Saanich Road
Victoria, BC V8Z 3G7
CANADA
phone: 604-479-9167
uq363@freenet.victoria.bc.ca

Chuck Williams
(University of Washington)
1636 North 52nd Street
Seattle, WA 98103
phone: 206-633-1910
toxin@u.washington.edu

Charlie Zhi
Department of Chemical Engineering
Oregon State University
Corvallis, OR 97331
phone: 503-737-3622
zhic@ucs.orst.edu