BUS 3700 Practice Questions for exams 3

Answers for questions 1 to 8

1. From the economic order quantity formula, the amount to order at one time is:

$$Q = \sqrt{\frac{2RA}{Ch}} = \sqrt{\frac{2 \times 540 \times 3.00}{0.25 \times 33}} = 19.8$$

The number of orders per year is

$$\frac{540}{19.8} = 27.3$$

2. (a) $\log S = 3.4800 + 0.0148 t$

$$g = 10^{.0148} = 1.0347$$

According to the regression line, on average the value in year t+1 is found by multiplying 1.0347 times the value in year t. This corresponds to an annual percent growth rate of 100(g-1)=3.47, or about 3.5 percent.

(b)
$$\log S = 3.4800 + 0.0148 t$$

$$\log S = 3.4800 + 0.0148 * 7$$

$$\log S = 3.4800 + 0.1036$$

$$\log S = 3.5836$$

$$S = 10^{3.5836} = 3,833.5$$

3. (a) Calculate the t statistic for each coefficient. If the t statistic is outside the range -2 to 2, then reject the null hypothesis that the true coefficient is zero, indicating that this variable does belong in the regression.

X1:
$$t \ statistic = \frac{-32.0}{4.0} = -8.00$$

this is far from zero, so reject the null hypothesis (it looks like X1 belongs)

$$X2: t statistic = \frac{14}{3.0} = 4.67$$

this is far from zero, so reject the null hypothesis (it looks like X2 belongs)

$$X3: \quad tstatistic = \frac{0.06}{0.04} = 1.50$$

This is inside the range of -2 to 2, so accept the null hypothesis, and it appears that this variable does not belong.

(b)

$$2,600 - 32 \times 38 + 14 \times 32 + 0.0600 \times 988 = 1,891.2800$$

4. The three examples show r squared values of 0.5, 0.026, and 0.8.

part (a) SUMMARY OUTPUT

Regression Statistics
Multiple R 0.707443667
R Square 0.500476542
Adjusted R Square 0.478758131
Standard Error 2997.806547
Observations 25

Coefficients Standard Error t Stat
Intercept 7859.55173 1270.67629 6.18532965
x 10.30514346 2.146723966 4.800404532

part (b)

SUMMARY OUTPUT

Regression Statistics Multiple R 0.162437479 R Square 0.026385935 Adjusted R Square -0.015945112 Standard Error 2997.806547 Observations 25

Coefficients Standard Error t Stat
Intercept 7859.55173 1270.67629 6.18532965
x -1.694856543 2.146723966 -0.789508372

part (c)

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.899575675 R Square 0.809236395 Adjusted R Square 0.800942325 Standard Error 523.6123443 Observations 25

	Coefficients	Standard Error	t Stat
Intercept	1646.990652	221.9428708	7.42
X	3.703704583	0.374957874	9.87

5. Using X alone as the independent variable does not produce a good fit. The graph shows that the relationship is not linear. Including X and X squared as independent variables produces a perfect fit.

part (b)

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.203097958
R Square 0.04124878
Adjusted R Square -0.000436055
Standard Error 2059.144973
Observations 25
24 101717518

	Coefficients	Standard Error	t Stat
Intercept	6878.940317	783.5170309	8.779567062
Х	14.61771788	14.69477925	0.994755867

part (c)

SUMMARY OUTPUT

Regression Statistics
Multiple R 1
R Square 1
Adjusted R Square 1
Standard Error 8.77993E-13
Observations 25

	Coefficients	Standard Error	t Stat
Intercept	2100	5.40498E-13	3.88531E+15
X	308	2.6826E-14	1.14814E+16
x squared	-3	2.66723E-16	-1.12476E+16

6. X2 and X4 are the two independent variables that seem to belong in this example:

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.999999228
R Square 0.999998456
Adjusted R Square 0.999997426
Standard Error 1.680479917
Observations 11

	Coefficients	Standard Error	t Stat
Intercept	55.98797939	3.07988409	18.17859951
x1	-0.035606965	0.026973441	-1.320074982
x2	39.99255265	0.022672056	1763.957952
x3	0.008519159	0.022774457	0.37406639
x4	-20.04953931	0.030941881	-647.9741691

7. None of the independent variables seem to belong in this example.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.409329131
R Square 0.167550337
Adjusted R Square -0.387416105
Standard Error 45.01145548
Observations 11

	Coefficients	Standard Error	t Stat
Intercept	16.34762207	68.01047685	0.240369173
x1	0.395626344	0.694966308	0.569274135
x2	0.486632795	0.591807438	0.822282323
x3	-0.594952213	0.629178142	-0.945602165
x4	0.161100527	0.458245532	0.351559405

8.

Regression Statistics
Multiple R 0.946735167
R Square 0.896307477
Adjusted R Square 0.827179128
Standard Error 47.54623738
Observations 11

	Coefficients	Standard Error	t Stat	P-value
Intercept	11712.47067	8757.577113	1.337409939	0.22955425
x1	7749.711534	5827.081634	1.329947308	0.23185661
x2	-3869.768599	2913.603458	-1.32817271	0.23240715
x3	4.260389	0.790268509	5.391065125	0.00167799
x4	2.642437406	0.677735106	3.898923609	0.0079939

Note the very large standard errors; this is because of the multicollinearity problem (since x2 is very close to being equal to 2x1+3). A regression between X1 and X2 gives an r-squared value of 0.999999795.