For each of the following problems, you are given some independent X variables and a dependent Y variable. Paste the data into Excel or another statistics program, and perform a multiple regression calculation with the given variables. The answers follow the data.
. X1 X2 X3 X4 Y1 1: 88 1 25 1 720 2: 74 57 48 3 1522 3: 18 21 80 6 -5 4: 65 53 76 11 1152 5: 6 87 31 11 1602 6: 68 84 100 4 1589 7: 66 32 97 6 559 8: 1 15 99 13 -426 9: 69 61 28 6 1721 10: 2 93 25 2 1703 11: 54 33 1 3 1218 12: 71 3 28 5 578 13: 31 59 24 0 1315 14: 22 89 98 7 1254 15: 6 47 54 4 597 r squared: 1.0000 Standard error: .... Coefficient 1 X1 10.0000 t statistic: ... Standard err: 0.0000 Coefficient 2 X2 20.0000 t statistic: ... Standard err: 0.0000 Coefficient 3 X3 -8.0000 t statistic: ... Standard err: 0.0000 Coefficient 4 X4 3.0000 t statistic: ... Standard err: 0.0000 Coefficient 5 Constant 17.0000 t statistic: ... Standard err: 0.0000
. X1 X2 X3 Y1 1: 88 1 25 720 2: 74 57 48 1522 3: 18 21 80 -5 4: 65 53 76 1152 5: 6 87 31 1602 6: 68 84 100 1589 7: 66 32 97 559 8: 1 15 99 -426 9: 69 61 28 1721 10: 2 93 25 1703 11: 54 33 1 1218 12: 71 3 28 578 13: 31 59 24 1315 14: 22 89 98 1254 15: 6 47 54 597 r squared: 0.9998 Standard error: 1.0497969445E+01 Coefficient 1 X1 9.8952 t statistic: 103.1190 Standard err: 0.0960 Coefficient 2 X2 19.9569 t statistic: 207.9134 Standard err: 0.0960 Coefficient 3 X3 -7.8432 t statistic: -94.8108 Standard err: 0.0827 Coefficient 4 Constant 31.4800 t statistic: 3.4851 Standard err: 9.0328 F statistic:17800.4965 3, 11 degrees of freedomSame as problem 1, except variable X4 has been left out. There still is a very good fit.
. X1 X3 X4 Y1 1: 88 25 1 720 2: 74 48 3 1522 3: 18 80 6 -5 4: 65 76 11 1152 5: 6 31 11 1602 6: 68 100 4 1589 7: 66 97 6 559 8: 1 99 13 -426 9: 69 28 6 1721 10: 2 25 2 1703 11: 54 1 3 1218 12: 71 28 5 578 13: 31 24 0 1315 14: 22 98 7 1254 15: 6 54 4 597 r squared: 0.2018 Standard error: 6.5355988994E+02 Coefficient 1 X1 2.7627 t statistic: 0.4683 Standard err: 5.8988 Coefficient 2 X3 -6.1229 t statistic: -1.0369 Standard err: 5.9048 Coefficient 3 X4 -22.0526 t statistic: -0.3952 Standard err: 55.8036 Coefficient 4 Constant 1341.3670 t statistic: 2.7929 Standard err: 480.2700 F statistic: 0.9270 3, 11 degrees of freedomSame as problem 1, except variable X2 is left out. The fit is much worse.
. X2 X3 X4 Y1 1: 1 25 1 720 2: 57 48 3 1522 3: 21 80 6 -5 4: 53 76 11 1152 5: 87 31 11 1602 6: 84 100 4 1589 7: 32 97 6 559 8: 15 99 13 -426 9: 61 28 6 1721 10: 93 25 2 1703 11: 33 1 3 1218 12: 3 28 5 578 13: 59 24 0 1315 14: 89 98 7 1254 15: 47 54 4 597 r squared: 0.8166 Standard error: 3.1330833087E+02 Coefficient 1 X2 16.6736 t statistic: 6.1498 Standard err: 2.7113 Coefficient 2 X3 -7.3966 t statistic: -2.6064 Standard err: 2.8379 Coefficient 3 X4 -25.0014 t statistic: -0.9750 Standard err: 25.6413 Coefficient 4 Constant 727.6567 t statistic: 3.4793 Standard err: 209.1405 F statistic: 16.3222 3, 11 degrees of freedomSame as problem 1, except without X1.
. X1 X2 Y1 1: 88 1 720 2: 74 57 1522 3: 18 21 -5 4: 65 53 1152 5: 6 87 1602 6: 68 84 1589 7: 66 32 559 8: 1 15 -426 9: 69 61 1721 10: 2 93 1703 11: 54 33 1218 12: 71 3 578 13: 31 59 1315 14: 22 89 1254 15: 6 47 597 r squared: 0.8315 Standard error: 2.8750017921E+02 Coefficient 1 X1 10.9014 t statistic: 4.1739 Standard err: 2.6118 Coefficient 2 X2 19.6518 t statistic: 7.4800 Standard err: 2.6272 Coefficient 3 Constant -422.1920 t statistic: -2.0122 Standard err: 209.8144 F statistic: 29.6080 2, 12 degrees of freedom
. X1 X4 Y1 1: 88 1 720 2: 74 3 1522 3: 18 6 -5 4: 65 11 1152 5: 6 11 1602 6: 68 4 1589 7: 66 6 559 8: 1 13 -426 9: 69 6 1721 10: 2 2 1703 11: 54 3 1218 12: 71 5 578 13: 31 0 1315 14: 22 7 1254 15: 6 4 597 r squared: 0.1238 Standard error: 6.5560542681E+02 Coefficient 1 X1 2.5604 t statistic: 0.4329 Standard err: 5.9141 Coefficient 2 X4 -50.4097 t statistic: -1.0331 Standard err: 48.7957 Coefficient 3 Constant 1172.7597 t statistic: 2.5870 Standard err: 453.3214 F statistic: 0.8476 2, 12 degrees of freedomProblems 1 to 6 illustrate what can happen when independent variables are left out of a regression calculation. The true relationship between X1, X2, X3, X4, and Y1 is given in problem 1. In problems 2 to 6, at least one independent variable is left out. In some cases the omitted variable does not seriously affect the results, but in other cases the omitted variable causes the coefficient estimates to be far off their true value.
X1 Y 1: 5 -152 2: 39 1768 3: 36 -342 4: 47 878 5: 53 248 6: 99 -272 7: 67 1068 8: 90 148 9: 100 -382 10: 48 -302 11: 74 528 12: 43 758 13: 32 -132 14: 86 728 15: 36 538 16: 8 1358 17: 47 118 18: 96 368 19: 67 1578 20: 78 -52 r squared: 0.0366 Standard error: 6.6160524348E+02 Coefficient 1 X1 -4.4062 t statistic: -0.8269 Standard err: 5.3284 Coefficient 2 Constant 676.0743 t statistic: 1.9857 Standard err: 340.4720 F statistic: 0.6838 1, 18 degrees of freedom
. X2 Y 1: 7 -152 2: 39 1768 3: 5 -342 4: 32 878 5: 17 248 6: 8 -272 7: 22 1068 8: 11 148 9: 4 -382 10: 7 -302 11: 18 528 12: 25 758 13: 12 -132 14: 15 728 15: 22 538 16: 34 1358 17: 5 118 18: 22 368 19: 33 1578 20: 3 -52 r squared: 0.8652 Standard error: 2.4745819242E+02 Coefficient 1 X2 54.3787 t statistic: 10.7496 Standard err: 5.0587 Coefficient 2 Constant -504.6568 t statistic: -4.9247 Standard err: 102.4737 F statistic: 115.5547 1, 18 degrees of freedom
. X3 Y 1: 52 -152 2: 20 1768 3: 61 -342 4: 74 878 5: 62 248 6: 69 -272 7: 5 1068 8: 42 148 9: 60 -382 10: 67 -302 11: 39 528 12: 51 758 13: 75 -132 14: 4 728 15: 58 538 16: 36 1358 17: 15 118 18: 75 368 19: 9 1578 20: 22 -52 r squared: 0.2977 Standard error: 5.6486544952E+02 D-W: 2.5574 Coefficient 1 X3 -14.5631 t statistic: -2.7625 Standard err: 5.2717 Coefficient 2 Constant 1074.9274 t statistic: 4.0135 Standard err: 267.8266 F statistic: 7.6314 1, 18 degrees of freedom
. X4 Y 1: 8 -152 2: 42 1768 3: 44 -342 4: 37 878 5: 19 248 6: 13 -272 7: 33 1068 8: 8 148 9: 25 -382 10: 9 -302 11: 8 528 12: 30 758 13: 34 -132 14: 18 728 15: 2 538 16: 5 1358 17: 25 118 18: 35 368 19: 40 1578 20: 36 -52 r squared: 0.0467 Standard error: 6.5811943916E+02 Coefficient 1 X4 10.2332 t statistic: 0.9393 Standard err: 10.8948 Coefficient 2 Constant 181.5077 t statistic: 0.6137 Standard err: 295.7803 F statistic: 0.8822 1, 18 degrees of freedom
. X1 X2 Y 1: 5 7 -152 2: 39 39 1768 3: 36 5 -342 4: 47 32 878 5: 53 17 248 6: 99 8 -272 7: 67 22 1068 8: 90 11 148 9: 100 4 -382 10: 48 7 -302 11: 74 18 528 12: 43 25 758 13: 32 12 -132 14: 86 15 728 15: 36 22 538 16: 8 34 1358 17: 47 5 118 18: 96 22 368 19: 67 33 1578 20: 78 3 -52 r squared: 0.8676 Standard error: 2.5241212684E+02 Coefficient 1 X1 1.1526 t statistic: 0.5481 Standard err: 2.1029 Coefficient 2 X2 55.1274 t statistic: 10.3279 Standard err: 5.3377 Coefficient 3 Constant -583.7523 t statistic: -3.2760 Standard err: 178.1923 F statistic: 55.6819 2, 17 degrees of freedom
. X1 X3 Y 1: 5 52 -152 2: 39 20 1768 3: 36 61 -342 4: 47 74 878 5: 53 62 248 6: 99 69 -272 7: 67 5 1068 8: 90 42 148 9: 100 60 -382 10: 48 67 -302 11: 74 39 528 12: 43 51 758 13: 32 75 -132 14: 86 4 728 15: 36 58 538 16: 8 36 1358 17: 47 15 118 18: 96 75 368 19: 67 9 1578 20: 78 22 -52 r squared: 0.3516 Standard error: 5.5849940111E+02 D-W: 2.7405 Coefficient 1 X1 -5.3608 t statistic: -1.1886 Standard err: 4.5103 Coefficient 2 X3 -15.0206 t statistic: -2.8739 Standard err: 5.2265 Coefficient 3 Constant 1403.9349 t statistic: 3.6649 Standard err: 383.0766 F statistic: 4.6095 2, 17 degrees of freedom
. X1 X4 Y 1: 5 8 -152 2: 39 42 1768 3: 36 44 -342 4: 47 37 878 5: 53 19 248 6: 99 13 -272 7: 67 33 1068 8: 90 8 148 9: 100 25 -382 10: 48 9 -302 11: 74 8 528 12: 43 30 758 13: 32 34 -132 14: 86 18 728 15: 36 2 538 16: 8 5 1358 17: 47 25 118 18: 96 35 368 19: 67 40 1578 20: 78 36 -52 *:MR X1,X4,Y r squared: 0.0919 Standard error: 6.6095574632E+02 Coefficient 1 X1 -4.9175 t statistic: -0.9197 Standard err: 5.3469 Coefficient 2 X4 11.1832 t statistic: 1.0175 Standard err: 10.9904 Coefficient 3 Constant 442.1377 t statistic: 1.0769 Standard err: 410.5476 F statistic: 0.8603 2, 17 degrees of freedom
. X2 X3 Y 1: 7 52 -152 2: 39 20 1768 3: 5 61 -342 4: 32 74 878 5: 17 62 248 6: 8 69 -272 7: 22 5 1068 8: 11 42 148 9: 4 60 -382 10: 7 67 -302 11: 18 39 528 12: 25 51 758 13: 12 75 -132 14: 15 4 728 15: 22 58 538 16: 34 36 1358 17: 5 15 118 18: 22 75 368 19: 33 9 1578 20: 3 22 -52 r squared: 1.0000 Standard error: 8.4772325116E-09 Coefficient 1 X2 50.0000 t statistic: 282700885650.0000 Standard err: 0.0000 Coefficient 2 X3 -10.0000 t statistic: -123846573050.0000 Standard err: 0.0000 Coefficient 3 Constant 18.0000 t statistic: 3279052617.3000 Standard err: 0.0000 F statistic: 0.0000 2, 17 degrees of freedom
. X2 X4 Y 1: 7 8 -152 2: 39 42 1768 3: 5 44 -342 4: 32 37 878 5: 17 19 248 6: 8 13 -272 7: 22 33 1068 8: 11 8 148 9: 4 25 -382 10: 7 9 -302 11: 18 8 528 12: 25 30 758 13: 12 34 -132 14: 15 18 728 15: 22 2 538 16: 34 5 1358 17: 5 25 118 18: 22 35 368 19: 33 40 1578 20: 3 36 -52 *:MR X2,X4,Y r squared: 0.8664 Standard error: 2.5353139435E+02 Coefficient 1 X2 53.9793 t statistic: 10.2122 Standard err: 5.2858 Coefficient 2 X4 1.6466 t statistic: 0.3847 Standard err: 4.2805 Coefficient 3 Constant -536.6235 t statistic: -4.0077 Standard err: 133.8977 F statistic: 55.1164 2, 17 degrees of freedom
. X3 X4 Y 1: 52 8 -152 2: 20 42 1768 3: 61 44 -342 4: 74 37 878 5: 62 19 248 6: 69 13 -272 7: 5 33 1068 8: 42 8 148 9: 60 25 -382 10: 67 9 -302 11: 39 8 528 12: 51 30 758 13: 75 34 -132 14: 4 18 728 15: 58 2 538 16: 36 5 1358 17: 15 25 118 18: 75 35 368 19: 9 40 1578 20: 22 36 -52 r squared: 0.3194 Standard error: 5.7219800395E+02 D-W: 2.5558 Coefficient 1 X3 -14.0538 t statistic: -2.6099 Standard err: 5.3848 Coefficient 2 X4 7.0296 t statistic: 0.7360 Standard err: 9.5517 Coefficient 3 Constant 886.5653 t statistic: 2.3770 Standard err: 372.9779 F statistic: 3.9894 2, 17 degrees of freedom
. X1 X2 X3 Y 1: 5 7 52 -152 2: 39 39 20 1768 3: 36 5 61 -342 4: 47 32 74 878 5: 53 17 62 248 6: 99 8 69 -272 7: 67 22 5 1068 8: 90 11 42 148 9: 100 4 60 -382 10: 48 7 67 -302 11: 74 18 39 528 12: 43 25 51 758 13: 32 12 75 -132 14: 86 15 4 728 15: 36 22 58 538 16: 8 34 36 1358 17: 47 5 15 118 18: 96 22 75 368 19: 67 33 9 1578 20: 78 3 22 -52 r squared: 1.0000 Standard error: 1.3170439975E-08 Coefficient 1 X1 -0.0000 t statistic: -0.6327 Standard err: 0.0000 Coefficient 2 X2 50.0000 t statistic: 174842452260.0000 Standard err: 0.0000 Coefficient 3 X3 -10.0000 t statistic: -79019521150.0000 Standard err: 0.0000 Coefficient 4 Constant 18.0000 t statistic: 1497711452.4000 Standard err: 0.0000 F statistic: 0.0000 3, 16 degrees of freedom
. X1 X2 X4 Y 1: 5 7 8 -152 2: 39 39 42 1768 3: 36 5 44 -342 4: 47 32 37 878 5: 53 17 19 248 6: 99 8 13 -272 7: 67 22 33 1068 8: 90 11 8 148 9: 100 4 25 -382 10: 48 7 9 -302 11: 74 18 8 528 12: 43 25 30 758 13: 32 12 34 -132 14: 86 15 18 728 15: 36 22 2 538 16: 8 34 5 1358 17: 47 5 25 118 18: 96 22 35 368 19: 67 33 40 1578 20: 78 3 36 -52 ****************************************
. X1 X3 X4 Y 1: 5 52 8 -152 2: 39 20 42 1768 3: 36 61 44 -342 4: 47 74 37 878 5: 53 62 19 248 6: 99 69 13 -272 7: 67 5 33 1068 8: 90 42 8 148 9: 100 60 25 -382 10: 48 67 9 -302 11: 74 39 8 528 12: 43 51 30 758 13: 32 75 34 -132 14: 86 4 18 728 15: 36 58 2 538 16: 8 36 5 1358 17: 47 15 25 118 18: 96 75 35 368 19: 67 9 40 1578 20: 78 22 36 -52 r squared: 0.3797 Standard error: 5.6306381919E+02 Coefficient 1 X1 -5.6930 t statistic: -1.2474 Standard err: 4.5638 Coefficient 2 X3 -14.4668 t statistic: -2.7249 Standard err: 5.3092 Coefficient 3 X4 8.0353 t statistic: 0.8518 Standard err: 9.4337 Coefficient 4 Constant 1209.0138 t statistic: 2.6932 Standard err: 448.9164 F statistic: 3.2652 3, 16 degrees of freedom
. X2 X3 X4 Y 1: 7 52 8 -152 2: 39 20 42 1768 3: 5 61 44 -342 4: 32 74 37 878 5: 17 62 19 248 6: 8 69 13 -272 7: 22 5 33 1068 8: 11 42 8 148 9: 4 60 25 -382 10: 7 67 9 -302 11: 18 39 8 528 12: 25 51 30 758 13: 12 75 34 -132 14: 15 4 18 728 15: 22 58 2 538 16: 34 36 5 1358 17: 5 15 25 118 18: 22 75 35 368 19: 33 9 40 1578 20: 3 22 36 -52 r squared: 1.0000 Standard error: 8.0814896769E-09 Coefficient 1 X2 50.0000 t statistic: 291930436510.0000 Standard err: 0.0000 Coefficient 2 X3 -10.0000 t statistic: -129349508580.0000 Standard err: 0.0000 Coefficient 3 X4 0.0000 t statistic: 0.8296 Standard err: 0.0000 Coefficient 4 Constant 18.0000 t statistic: 2975240473.2000 Standard err: 0.0000 F statistic: 0.0000 3, 16 degrees of freedom
. X1 X2 X3 X4 Y 1: 5 7 52 8 -152 2: 39 39 20 42 1768 3: 36 5 61 44 -342 4: 47 32 74 37 878 5: 53 17 62 19 248 6: 99 8 69 13 -272 7: 67 22 5 33 1068 8: 90 11 42 8 148 9: 100 4 60 25 -382 10: 48 7 67 9 -302 11: 74 18 39 8 528 12: 43 25 51 30 758 13: 32 12 75 34 -132 14: 86 15 4 18 728 15: 36 22 58 2 538 16: 8 34 36 5 1358 17: 47 5 15 25 118 18: 96 22 75 35 368 19: 67 33 9 40 1578 20: 78 3 22 36 -52 r squared: 1.0000 Standard error: 1.0137673670E-08 Coefficient 1 X1 -0.0000 t statistic: -0.7027 Standard err: 0.0000 Coefficient 2 X2 50.0000 t statistic: 222166874780.0000 Standard err: 0.0000 Coefficient 3 X3 -10.0000 t statistic: -102374752610.0000 Standard err: 0.0000 Coefficient 4 X4 -0.0000 t statistic: -0.4268 Standard err: 0.0000 Coefficient 5 Constant 18.0000 t statistic: 1855905377.9000 Standard err: 0.0000 F statistic: 0.0000 4, 15 degrees of freedomProblems 7 to 21 use the same values for the dependent variable Y and the same set of independent variables X1, X2, X3, and X4. Problem 14 illustrates that you can achieve a perfect fit with independent variables X2 and X3. Problem 21 illustrates that the other coefficients will have estimated coefficients of zero if X2 and X3 are included. The other problems indicate what can happen when different combinations of independent variables are used.
. X1 X2 X3 Y 1: 99 120 35 8708 2: 56 49 31 6355 3: 31 90 106 5970 4: 54 54 47 5354 5: 36 3 115 5557 6: 60 100 104 7272 7: 6 42 115 7262 8: 0 87 76 8623 9: 69 105 108 8207 10: 47 84 82 4500 11: 32 120 7 6220 12: 43 108 17 7642 13: 21 135 86 3875 14: 82 123 107 8335 15: 38 127 66 10009 16: 42 40 59 4216 17: 76 146 16 8980 18: 66 137 116 6325 19: 19 95 90 7843 20: 61 32 24 4314 r squared: 0.2372 Standard error: 1.6964385518E+03 Coefficient 1 X1 4.0427 t statistic: 0.2473 Standard err: 16.3472 Coefficient 2 X2 20.7441 t statistic: 2.0694 Standard err: 10.0241 Coefficient 3 X3 1.9095 t statistic: 0.1820 Standard err: 10.4920 Coefficient 4 Constant 4590.5502 t statistic: 3.2588 Standard err: 1408.6680 F statistic: 1.6580 3, 16 degrees of freedom
X1 X2 X4 Y 1: 99 120 74 8708 2: 56 49 22 6355 3: 31 90 71 5970 4: 54 54 68 5354 5: 36 3 49 5557 6: 60 100 46 7272 7: 6 42 3 7262 8: 0 87 79 8623 9: 69 105 34 8207 10: 47 84 50 4500 11: 32 120 1 6220 12: 43 108 45 7642 13: 21 135 17 3875 14: 82 123 63 8335 15: 38 127 71 10009 16: 42 40 27 4216 17: 76 146 25 8980 18: 66 137 24 6325 19: 19 95 32 7843 20: 61 32 63 4314 r squared: 0.3036 Standard error: 1.6208913125E+03 Coefficient 1 X1 -1.1288 t statistic: -0.0718 Standard err: 15.7172 Coefficient 2 X2 22.1208 t statistic: 2.2942 Standard err: 9.6421 Coefficient 3 X4 19.9152 t statistic: 1.2500 Standard err: 15.9321 Coefficient 4 Constant 3983.3948 t statistic: 3.3357 Standard err: 1194.1876 F statistic: 2.3249 3, 16 degrees of freedom
. X1 X3 X4 Y 1: 99 35 74 8708 2: 56 31 22 6355 3: 31 106 71 5970 4: 54 47 68 5354 5: 36 115 49 5557 6: 60 104 46 7272 7: 6 115 3 7262 8: 0 76 79 8623 9: 69 108 34 8207 10: 47 82 50 4500 11: 32 7 1 6220 12: 43 17 45 7642 13: 21 86 17 3875 14: 82 107 63 8335 15: 38 66 71 10009 16: 42 59 27 4216 17: 76 16 25 8980 18: 66 116 24 6325 19: 19 90 32 7843 20: 61 24 63 4314 r squared: 0.0746 Standard error: 1.8684387938E+03 Coefficient 1 X1 9.7396 t statistic: 0.5475 Standard err: 17.7904 Coefficient 2 X3 0.5486 t statistic: 0.0473 Standard err: 11.5921 Coefficient 3 X4 15.5295 t statistic: 0.8486 Standard err: 18.3001 Coefficient 4 Constant 5612.0956 t statistic: 3.8932 Standard err: 1441.5079 F statistic: 0.4301 3, 16 degrees of freedom
X2 X3 X4 Y 1: 120 35 74 8708 2: 49 31 22 6355 3: 90 106 71 5970 4: 54 47 68 5354 5: 3 115 49 5557 6: 100 104 46 7272 7: 42 115 3 7262 8: 87 76 79 8623 9: 105 108 34 8207 10: 84 82 50 4500 11: 120 7 1 6220 12: 108 17 45 7642 13: 135 86 17 3875 14: 123 107 63 8335 15: 127 66 71 10009 16: 40 59 27 4216 17: 146 16 25 8980 18: 137 116 24 6325 19: 95 90 32 7843 20: 32 24 63 4314 r squared: 0.3038 Standard error: 1.6206099548E+03 Coefficient 1 X2 21.9952 t statistic: 2.3804 Standard err: 9.2403 Coefficient 2 X3 1.0159 t statistic: 0.1035 Standard err: 9.8144 Coefficient 3 X4 19.6028 t statistic: 1.2646 Standard err: 15.5006 Coefficient 4 Constant 3883.7664 t statistic: 2.8401 Standard err: 1367.4764 F statistic: 2.3276 3, 16 degrees of freedom
. X1 X2 X3 X4 Y 1: 99 120 35 74 8708 2: 56 49 31 22 6355 3: 31 90 106 71 5970 4: 54 54 47 68 5354 5: 36 3 115 49 5557 6: 60 100 104 46 7272 7: 6 42 115 3 7262 8: 0 87 76 79 8623 9: 69 105 108 34 8207 10: 47 84 82 50 4500 11: 32 120 7 1 6220 12: 43 108 17 45 7642 13: 21 135 86 17 3875 14: 82 123 107 63 8335 15: 38 127 66 71 10009 16: 42 40 59 27 4216 17: 76 146 16 25 8980 18: 66 137 116 24 6325 19: 19 95 90 32 7843 20: 61 32 24 63 4314 r squared: 0.3039 Standard error: 1.6736253722E+03 D-W: 2.3080 Coefficient 1 X1 -0.8131 t statistic: -0.0489 Standard err: 16.6275 Coefficient 2 X2 22.1342 t statistic: 2.2230 Standard err: 9.9570 Coefficient 3 X3 0.9054 t statistic: 0.0872 Standard err: 10.3846 Coefficient 4 X4 19.7992 t statistic: 1.1997 Standard err: 16.5041 Coefficient 5 Constant 3908.7023 t statistic: 2.6033 Standard err: 1501.4595 F statistic: 1.6374 4, 15 degrees of freedom
X1 X2 X3 X4 Y 1: 99 120 35 74 132 2: 56 49 31 22 142 3: 31 90 106 71 66 4: 54 54 47 68 72 5: 36 3 115 49 106 6: 60 100 104 46 110 7: 6 42 115 3 186 8: 0 87 76 79 171 9: 69 105 108 34 142 10: 47 84 82 50 34 11: 32 120 7 1 132 12: 43 108 17 45 149 13: 21 135 86 17 19 14: 82 123 107 63 113 15: 38 127 66 71 190 16: 42 40 59 27 70 17: 76 146 16 25 175 18: 66 137 116 24 69 19: 19 95 90 32 161 20: 61 32 24 63 55 r squared: 0.0771 Standard error: 5.5787512408E+01 Coefficient 1 X1 -0.4271 t statistic: -0.7706 Standard err: 0.5543 Coefficient 2 X2 0.2378 t statistic: 0.7165 Standard err: 0.3319 Coefficient 3 X3 -0.2365 t statistic: -0.6832 Standard err: 0.3462 Coefficient 4 X4 -0.0067 t statistic: -0.0122 Standard err: 0.5501 Coefficient 5 Constant 130.2901 t statistic: 2.6033 Standard err: 50.0487 F statistic: 0.3135 4, 15 degrees of freedom In exercise 27 each column was generated randomly, so there is no connection between the independent variables and the dependent variable.28.
Perform a regression calculation with T as the indepenent variable and Y as the dependent variable. (In this case T represents time.) Then, calculate the regression residuals and graph those values.. T Y 1: 1 100.00000 2: 2 106.00000 3: 3 112.36000 4: 4 119.10160 5: 5 126.24770 6: 6 133.82256 7: 7 141.85191 8: 8 150.36303 9: 9 159.38481 10: 10 168.94790 11: 11 179.08477 12: 12 189.82986 13: 13 201.21965 14: 14 213.29283 15: 15 226.09040 16: 16 239.65582 17: 17 254.03517 18: 18 269.27728 19: 19 285.43392 20: 20 302.55995 r squared: 0.97829 Standard error: 9.4897383804E+00 Coefficient 1 T 10.48169 t statistic: 28.48315 Standard err: 0.36800 Coefficient 2 Constant 73.87017 t statistic: 16.75713 Standard err: 4.40828 F statistic: 811.28995 1, 18 degrees of freedomThere seems to be a good fit for this regression. The regression residuals are:1: 15.64813 2: 11.16644 3: 7.04475 4: 3.30465 5: -0.03094 6: -2.93778 7: -5.39012 8: -7.36070 9: -8.82061 10: -9.73921 11: -10.08403 12: -9.82064 13: -8.91254 14: -7.32106 15: -5.00518 16: -1.92145 17: 1.97620 18: 6.73662 19: 12.41156 20: 19.05590The graph of these residuals do not show a random variation, but instead a clear pattern: larger residuals at first, then smaller, then larger again. This clearly indicates that this regression is not the best fit. In this case we have a curved relationship, so we should perform another regression using the base-10 logarithm of Y as the dependent variable:. X Y LOG(Y) 1: 1 100.00000 2.00000 2: 2 106.00000 2.02531 3: 3 112.36000 2.05061 4: 4 119.10160 2.07592 5: 5 126.24770 2.10122 6: 6 133.82256 2.12653 7: 7 141.85191 2.15184 8: 8 150.36303 2.17714 9: 9 159.38481 2.20245 10: 10 168.94790 2.22775 11: 11 179.08477 2.25306 12: 12 189.82986 2.27836 13: 13 201.21965 2.30367 14: 14 213.29283 2.32898 15: 15 226.09040 2.35428 16: 16 239.65582 2.37959 17: 17 254.03517 2.40489 18: 18 269.27728 2.43020 19: 19 285.43392 2.45551 20: 20 302.55995 2.48081 r squared: 1.00000 Standard error: 6.8598386248E-12 Coefficient 1 X 0.02531 t statistic: 95130135393.00000 Standard err: 0.00000 Coefficient 2 Constant 1.97469 t statistic: 619684750750.00000 Standard err: 0.00000 F statistic: 0.00000 1, 18 degrees of freedomNow there is a perfect fit. This situation indicates constant percentage growth.