
CHAPTER 1

The Real Numbers

IN THIS CHAPTER we begin the study of the real number system. The concepts discussed

here will be used throughout the book.

SECTION 1.1 deals with the axioms that define the real numbers, definitions based on

them, and some basic properties that follow from them.

SECTION 1.2 emphasizes the principle of mathematical induction.

SECTION 1.3 introduces basic ideas of set theory in the context of sets of real num-

bers. In this section we prove two fundamental theorems: the Heine–Borel and Bolzano–

Weierstrass theorems.

1.1 THE REAL NUMBER SYSTEM

Having taken calculus, you know a lot about the real number system; however, you

probably do not know that all its properties follow from a few basic ones. Although we

will not carry out the development of the real number system from these basic properties,

it is useful to state them as a starting point for the study of real analysis and also to focus

on one property, completeness, that is probably new to you.

Field Properties

The real number system (which we will often call simply the reals) is first of all a set

fa; b; c; : : : g on which the operations of addition and multiplication are defined so that

every pair of real numbers has a unique sum and product, both real numbers, with the

following properties.

(A) aC b D b C a and ab D ba (commutative laws).

(B) .a C b/C c D aC .b C c/ and .ab/c D a.bc/ (associative laws).

(C) a.b C c/ D ab C ac (distributive law).

(D) There are distinct real numbers 0 and 1 such that aC 0 D a and a1 D a for all a.

(E) For each a there is a real number �a such that aC .�a/ D 0, and if a ¤ 0, there is

a real number 1=a such that a.1=a/ D 1.
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The manipulative properties of the real numbers, such as the relations

.a C b/2 D a2 C 2abC b2;

.3a C 2b/.4cC 2d/D 12acC 6ad C 8bc C 4bd;
.�a/ D .�1/a; a.�b/ D .�a/b D �ab;

and
a

b
C c

d
D ad C bc

bd
.b; d ¤ 0/;

all follow from (A)–(E). We assume that you are familiar with these properties.

A set on which two operations are defined so as to have properties (A)–(E) is called a

field. The real number system is by no means the only field. The rational numbers (which

are the real numbers that can be written as r D p=q, where p and q are integers and q ¤ 0)

also form a field under addition and multiplication. The simplest possible field consists of

two elements, which we denote by 0 and 1, with addition defined by

0C 0 D 1C 1 D 0; 1C 0 D 0C 1 D 1; (1)

and multiplication defined by

0 � 0 D 0 � 1 D 1 � 0 D 0; 1 � 1 D 1 (2)

(Exercise 2).

The Order Relation

The real number system is ordered by the relation<, which has the following properties.

(F) For each pair of real numbers a and b, exactly one of the following is true:

a D b; a < b; or b < a:

(G) If a < b and b < c, then a < c. (The relation< is transitive.)

(H) If a < b, then aC c < b C c for any c, and if 0 < c, then ac < bc.

A field with an order relation satisfying (F)–(H) is an ordered field. Thus, the real

numbers form an ordered field. The rational numbers also form an ordered field, but it is

impossible to define an order on the field with two elements defined by (1) and (2) so as to

make it into an ordered field (Exercise 2).

We assume that you are familiar with other standard notation connected with the order

relation: thus, a > b means that b < a; a � b means that either a D b or a > b; a � b
means that either a D b or a < b; the absolute value of a, denoted by jaj, equals a if

a � 0 or �a if a � 0. (Sometimes we call jaj the magnitude of a.)

You probably know the following theorem from calculus, but we include the proof for

your convenience.
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Supremum of a Set

A set S of real numbers is bounded above if there is a real number b such that x � b

whenever x 2 S . In this case, b is an upper bound of S . If b is an upper bound of S ,

then so is any larger number, because of property (G). If ˇ is an upper bound of S , but no

number less than ˇ is, then ˇ is a supremum of S , and we write

ˇ D supS:
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With the real numbers associated in the usual way with the points on a line, these defini-

tions can be interpreted geometrically as follows: b is an upper bound of S if no point of S

is to the right of b; ˇ D supS if no point of S is to the right of ˇ, but there is at least one

point of S to the right of any number less than ˇ (Figure 1.1.1).

(S = dark line segments)
β b

Figure 1.1.1

Example 1.1.1 If S is the set of negative numbers, then any nonnegative number is an

upper bound of S , and supS D 0. If S1 is the set of negative integers, then any number a

such that a � �1 is an upper bound of S1, and supS1 D �1.

This example shows that a supremum of a set may or may not be in the set, since S1

contains its supremum, but S does not.

A nonempty set is a set that has at least one member. The empty set, denoted by ;, is the

set that has no members. Although it may seem foolish to speak of such a set, we will see

that it is a useful idea.

The Completeness Axiom

It is one thing to define an object and another to show that there really is an object that

satisfies the definition. (For example, does it make sense to define the smallest positive

real number?) This observation is particularly appropriate in connection with the definition

of the supremum of a set. For example, the empty set is bounded above by every real

number, so it has no supremum. (Think about this.) More importantly, we will see in

Example 1.1.2 that properties (A)–(H) do not guarantee that every nonempty set that

is bounded above has a supremum. Since this property is indispensable to the rigorous

development of calculus, we take it as an axiom for the real numbers.

(I) If a nonempty set of real numbers is bounded above, then it has a supremum.

Property (I) is called completeness, and we say that the real number system is a complete

ordered field. It can be shown that the real number system is essentially the only complete

ordered field; that is, if an alien from another planet were to construct a mathematical

system with properties (A)–(I), the alien’s system would differ from the real number

system only in that the alien might use different symbols for the real numbers and C, �,
and <.

Theorem 1.1.3 If a nonempty set S of real numbers is bounded above; then supS is

the unique real number ˇ such that

(a) x � ˇ for all x in S I
(b) if � > 0 .no matter how small/; there is an x0 in S such that x0 > ˇ � �:
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Proof We first show that ˇ D supS has properties (a) and (b). Since ˇ is an upper

bound of S , it must satisfy (a). Since any real number a less than ˇ can be written as ˇ��
with � D ˇ � a > 0, (b) is just another way of saying that no number less than ˇ is an

upper bound of S . Hence, ˇ D supS satisfies (a) and (b).

Now we show that there cannot be more than one real number with properties (a) and

(b). Suppose that ˇ1 < ˇ2 and ˇ2 has property (b); thus, if � > 0, there is an x0 in S

such that x0 > ˇ2 � �. Then, by taking � D ˇ2 � ˇ1, we see that there is an x0 in S such

that

x0 > ˇ2 � .ˇ2 � ˇ1/ D ˇ1;

so ˇ1 cannot have property (a). Therefore, there cannot be more than one real number

that satisfies both (a) and (b).

Some Notation

We will often define a set S by writing S D
˚
x
ˇ̌
� � �
	
, which means that S consists of all

x that satisfy the conditions to the right of the vertical bar; thus, in Example 1.1.1,

S D
˚
x
ˇ̌
x < 0

	
(8)

and

S1 D
˚
x
ˇ̌
x is a negative integer

	
:

We will sometimes abbreviate “x is a member of S” by x 2 S , and “x is not a member of

S” by x … S . For example, if S is defined by (8), then

�1 2 S but 0 … S:

A nonempty set is a set that has at least one member. The empty set , denoted by ;, is the

set that has no members. Although it may seem foolish to speak of such a set, we will see

that it is a useful concept.

The Archimedean Property

The property of the real numbers described in the next theorem is called the Archimedean

property. Intuitively, it states that it is possible to exceed any positive number, no matter

how large, by adding an arbitrary positive number, no matter how small, to itself sufficiently

many times.

Theorem 1.1.4 (The Archimedean Property) If � and � are positive; then

n� > � for some integer n:

Proof The proof is by contradiction. If the statement is false, � is an upper bound of

the set

S D
˚
x
ˇ̌
x D n�; n is an integer

	
:

Therefore, S has a supremum ˇ, by property (I). Therefore,

n� � ˇ for all integers n: (9)
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Since nC 1 is an integer whenever n is, (9) implies that

.nC 1/� � ˇ

and therefore

n� � ˇ � �
for all integers n. Hence, ˇ � � is an upper bound of S . Since ˇ � � < ˇ, this contradicts

the definition of ˇ.

Density of the Rationals and Irrationals

Definition 1.1.5 A set D is dense in the reals if every open interval .a; b/ contains a

member of D.

Theorem 1.1.6 The rational numbers are dense in the reals I that is, if a and b are

real numbers with a < b; there is a rational number p=q such that a < p=q < b.

Proof From Theorem 1.1.4 with � D 1 and � D b�a, there is a positive integer q such

that q.b � a/ > 1. There is also an integer j such that j > qa. This is obvious if a � 0,

and it follows from Theorem 1.1.4 with � D 1 and � D qa if a > 0. Let p be the smallest

integer such that p > qa. Then p � 1 � qa, so

qa < p � qaC 1:

Since 1 < q.b � a/, this implies that

qa < p < qa C q.b � a/ D qb;

so qa < p < qb. Therefore, a < p=q < b.

Example 1.1.2 The rational number system is not complete; that is, a set of rational

numbers may be bounded above (by rationals), but not have a rational upper bound less

than any other rational upper bound. To see this, let

S D
˚
r
ˇ̌
r is rational and r2 < 2

	
:

If r 2 S , then r <
p
2. Theorem 1.1.6 implies that if � > 0 there is a rational number r0

such that
p
2 � � < r0 <

p
2, so Theorem 1.1.3 implies that

p
2 D supS . However,

p
2

is irrational; that is, it cannot be written as the ratio of integers (Exercise 3). Therefore, if

r1 is any rational upper bound of S , then
p
2 < r1. By Theorem 1.1.6, there is a rational

number r2 such that
p
2 < r2 < r1. Since r2 is also a rational upper bound of S , this shows

that S has no rational supremum.

Since the rational numbers have properties (A)–(H), but not (I), this example shows

that (I) does not follow from (A)–(H).

Theorem 1.1.7 The set of irrational numbers is dense in the reals I that is, if a and b

are real numbers with a < b; there is an irrational number t such that a < t < b:
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Proof From Theorem 1.1.6, there are rational numbers r1 and r2 such that

a < r1 < r2 < b: (10)

Let

t D r1 C
1
p
2
.r2 � r1/:

Then t is irrational (why?) and r1 < t < r2, so a < t < b, from (10).

Infimum of a Set

A set S of real numbers is bounded below if there is a real number a such that x � a

whenever x 2 S . In this case, a is a lower bound of S . If a is a lower bound of S , so is

any smaller number, because of property (G). If ˛ is a lower bound of S , but no number

greater than ˛ is, then ˛ is an infimum of S , and we write

˛ D infS:

Geometrically, this means that there are no points of S to the left of ˛, but there is at least

one point of S to the left of any number greater than ˛.

Theorem 1.1.8 If a nonempty set S of real numbers is bounded below; then infS is

the unique real number ˛ such that

(a) x � ˛ for all x in S I
(b) if � > 0 .no matter how small /, there is an x0 in S such that x0 < ˛ C �:

Proof (Exercise 6)

A set S is bounded if there are numbers a and b such that a � x � b for all x in S . A

bounded nonempty set has a unique supremum and a unique infimum, and

infS � supS (11)

(Exercise 7).


