Representing energy transfers and transformations

Rachel E. Scherr,
Hunter G. Close, Lane Seeley, and Sam McKagan
AAPT Winter Meeting - Ontario, CA
February 7, 2012

患ENERGYPROJECT

Seattle Pacific
UNIVERSITY
INNOVATIONS

Energy Project

Professional development program for K-12 teachers on the learning of energy and practices of formative assessment

Research program on:

- teaching and learning of energy
- relating "school energy" to sociopolitical concerns
- learning theory development
- assessment of teacher learning

Energy Project team and collaborators

Stamatis Vokos
Lane Seeley
Lezlie DeWater
Rachel Scherr
Sam McKagan
Amy Robertson
Abigail Daane Julie Glavic

© Hunter Close
© Eleanor Close
d))
minaine Benedikt Harrer

TMAINE Michael Wittmann
Leslie Atkins

Goals for energy learning

SUBSTANCE METAPHOR

Energy is a kind of stuff (invisible, massless, etc.); objects are containers that can have such stuff in them.

ENERGY DYNAMICS

Detailed tracking of energy transfers and transformations in real-world processes
\checkmark Conservation
\checkmark Transfer
\checkmark Flow

Population-specific learning goals

Our learners are inservice K-12 teachers.

- They need foundational conceptual understanding.
\square
- They want responsible connections to urgent sociopolitical issues.
- They teach in a wide range of situations.

To leverage sound conceptual understanding into changes in their classroom, they have to be prepared to be creative.

ENERGYPROJECT

Theoretical perspective

Learning is anchored in representations.
Culturally-produced artifacts that speak with the voice of the culture that produced them

GUIDING QUESTIONS:
What do specific representations "say" about energy? What questions do specific representations "ask"? What representations support our learning goals?

ENERGYPROJECT

Familiar representations of energy

"There is a total amount of energy.
 That whole amount is divided into parts."

RIET
"What proportion of the energy is in each form?"
"There are different categories of energy."
"Which form has the most energy in it?"

Do they support our learning goals?

Energy is a kind of stuff (invisible, massless, etc.);
forms (or systems)
are containers that can have such stuff in them.

MAYBE?

NOT SO MUCH

Novel representations of energy

Energy Theater
You are a unit of energy.
Objects in scenario correspond to areas on the floor.
You indicate your form in some way.
As energy is transferred among objects, you move to different locations on the floor.

Energy Cubes

Blocks are units of energy.
Objects correspond to areas on whiteboard.

ENERGYPROJECT

Novel representations of energy

"Energy is located in objects. Every unit of energy has a form.
Energy moves among objects and transforms."

"Where does the energy start? Where does it go after that? What form is each unit of energy in at each moment?"

These support our learning goals

EMBODY

ASK FOR

∞_{0}^{∞}

ENERGYPROJECT

Assessment of energy learning

"After acting out the Energy Theater, draw and label one or more diagrams that show what your group did."

Learner-invented representations

ENERGYPROJECT

Learner-invented representations

Each energy unit is a letter that traces a path through the system; when form changes, letter changes

Energy units are colored letters; objects are schematic areas; time sequence is diagram sequence; coordinated with observable state of system (volume, temperature)

ENERGYPROJECT
INNOVATIONS

Expert-refined representations

Each energy unit is a letter that traces a path through the system; when form changes, letter changes; arrow color indicates mechanism

Chemical Energy
Gravitational Potential Energy
Kinetic Energy

Energy movie in which energy units are dots; when form changes, color changes

ENERGYPROJECT

Progress toward learning goals

ENERGYPROJECT

